Resources

Text Search:
Applied Filters
    Potential Scenario
    139

    views

    79

    downloads

    0

    comments

    2003-Fay-Graham-Coupled spring equations
    Coupled spring equations for modelling the motion of two springs with weights attached, hung in series from the ceiling are described.
    Modeling Scenario
    296

    views

    322

    downloads

    0

    comments

    1-088-RoomTemperature-ModelingScenario
    Students will analyze temperature variations in a room using Newton's Cooling Law. In this model, the only influence on the indoor temperature is the (oscillating) outdoor temperature (as we assume the heating/cooling system is broken).
    Modeling Scenario
    391

    views

    265

    downloads

    0

    comments

    5-076-LanchesterLaws-ModelingScenario
    Lanchester's laws are used to calculate the relative strengths of military forces. The Lanchester equations are differential equations describing the time dependence of two armies' strengths A and B as a function of time,
    Modeling Scenario
    644

    views

    545

    downloads

    0

    comments

    1-032-WordPropagation-ModelingScenario
    This activity is a gentle introduction to modeling via differential equations. The students will learn about exponential growth by modeling the rate at which the word jumbo has propagated through English language texts over time.
    Article or Presentation
    184

    views

    56

    downloads

    0

    comments

    Free Online Textbook
    211

    views

    83

    downloads

    0

    comments

    2018-Eduardo-Sontag-Lecture_Notes_on_Mathematical_Systems_Biology
    I am often asked if it is OK to use these notes in courses at other universities. The answer is “of course!” though I strongly suggest that a link to my website be provided, so that students can always access the current version.
    Potential Scenario
    151

    views

    33

    downloads

    0

    comments

    2011-W_Wood-Squigonometry
    The differential equations used to define a unit circle, namely x’(t) = - y(t), y’(t) = x(t), x(0) = 1, y(0) = 0 are generalized to produce interesting functions which satisfy trig like identities.
    Article or Presentation
    842

    views

    410

    downloads

    0

    comments

    2020-TeachingModule-SpringDesignToMeetSpecsAtMinimumCosts
    We discuss a Modeling Scenario in which students are asked to design a spring mass system at minimum costs give relative costs of features of the spring.
    Modeling Scenario
    366

    views

    215

    downloads

    1

    comments

    1-092-DashItAll-ModelingSenario
    This project uses very basic physics, Newton's Second Law of Motion, to model the motion of a sprinter running down a track. We derive the classic Hill-Keller model for a sprinter exerting ``maximum'' effort as he/she accelerates down a track.
    Modeling Scenario
    247

    views

    208

    downloads

    0

    comments

    3-110-MilitarySpringMassApplication-ModelingScenario
    The is a collection of different scenarios for the shock system of a trailer. In each scenario, students will transform the shock system of a trailer into a second-order differential equation, solve, and interpret the results.
    Modeling Scenario
    442

    views

    263

    downloads

    0

    comments

    7-011-CoupledSystemLaplace-ModelingScenario
    Differential equations and Laplace transforms are an integral part of control problems in engineering systems. We consider a baby warming device.
    Modeling Scenario
    305

    views

    207

    downloads

    0

    comments

    1-051-OneTankSaltModel-ModelingScenario
    A large tank initially contains 60 pounds of salt dissolved into 90 gallons of water. Salt water flows in at a rate of 4 gallons per minute, with a salt density of 2 pounds per gallon. The incoming water is mixed in with the contents of the tank...
    Modeling Scenario
    249

    views

    117

    downloads

    0

    comments

    3-041-UpDown-ModelingScenario
    Shoot a projectile straight up in the air. Determine maximum height the projectile will go. Consider time T(a) (0 < a < 1) it takes between when the projectile passes distance a.H going up and then coming down. Develop T(a) as a function of a.
    Modeling Scenario
    1185

    views

    3708

    downloads

    0

    comments

    1-005-OilSlick-ModelingScenario
    We describe a modeling activity with difference and differential equations which enlightens students on the model building process and parameter estimation for a linear, first-order, non-homogeneous, ordinary differential equation.
    Technique Narrative
    377

    views

    198

    downloads

    0

    comments

    1-030-RandomPerturbation-TechniqueNarrative
    After a brief historical view of this problem, we will demonstrate the derivation of first order linear differential equations with random perturbations.
    Modeling Scenario
    444

    views

    580

    downloads

    0

    comments

    1-011-Kinetics-ModelingScenario
    We make the connection between chemistry course and differential equations coursework. We do this through modeling kinetics, or rates of chemical reaction. We study zeroth, first, and second order reactions.
    Modeling Scenario
    260

    views

    210

    downloads

    0

    comments

    3-105-FrequencyResponse-ModelingScenario
    We describe the frequency response to a second order differential equation with a driving function as the maximum steady state solution amplitude and perform some analyses in this regard.
    Modeling Scenario
    335

    views

    149

    downloads

    0

    comments

    1-105-AnimalFall-ModelingScenario
    This project uses Newton's Second Law of Motion to model a falling animal with a resistance term proportional to cross sectional area of the animal, presumed to be spherical in shape.
    Modeling Scenario
    308

    views

    290

    downloads

    0

    comments

    1-190-IntroClass-ModelingScenario
    Students go through development of ideas in mathematical modeling with differential equations. They encounter fundamental ideas of unlimited population growth, limited population growth and a predator prey system.
    Potential Scenario
    154

    views

    63

    downloads

    0

    comments

    1984-Marguerite_Hays-Compartmental Models for Human Iodine Metabolism
    Compartmental models for the various aspects of human iodine metabolism are reviewed, emphasizing the role of Mones Berman in the development of this field.