Resources

Text Search:
Applied Filters
    Modeling Scenario
    1155

    views

    626

    downloads

    0

    comments

    3-065-UpDown-ModelingScenario
    We model the height of a launched object which is subject to resistance proportional to velocity during its flight. We ask questions about the motion as well, e.g., highest point or apex and terminal velocity.
    Modeling Scenario
    343

    views

    414

    downloads

    0

    comments

    3-006-Buoyancy-ModelingScenario
    We offer data from a physical experiment in which the depth of a container in water is measured and ask students to build a model of buoyancy based on Newton's Second Law of Motion and a Free Body Diagram. We ask students to estimate the parameters.
    Modeling Scenario
    205

    views

    213

    downloads

    0

    comments

    3-095-ShotInWater-ModelingScenario
    This project uses Newton's Second Law of Motion in conjunction with a quadratic model for the resistance experienced by a bullet moving through water to analyze a classic action movie scene.
    Modeling Scenario
    610

    views

    820

    downloads

    0

    comments

    3-002-ModelsMotivatingSecondOrder-ModelingScenario
    Ordinary differential equations involve second derivatives and second derivatives appear in many contexts, chief among them are the study of forces and resulting motion. This is principally because of Newton's Second Law of Motion.
    Modeling Scenario
    389

    views

    418

    downloads

    0

    comments

    3-001-SpringMassDataAnalysis-ModelingScenario
    We offer data on position of a mass at end of spring over time where the spring mass configuration has damping due to taped flat index cards at the bottom of the mass. Modeling of a spring mass configuration and estimation of parameters are the core.
    Modeling Scenario
    335

    views

    149

    downloads

    0

    comments

    1-105-AnimalFall-ModelingScenario
    This project uses Newton's Second Law of Motion to model a falling animal with a resistance term proportional to cross sectional area of the animal, presumed to be spherical in shape.
    Modeling Scenario
    366

    views

    215

    downloads

    1

    comments

    1-092-DashItAll-ModelingSenario
    This project uses very basic physics, Newton's Second Law of Motion, to model the motion of a sprinter running down a track. We derive the classic Hill-Keller model for a sprinter exerting ``maximum'' effort as he/she accelerates down a track.
    Modeling Scenario
    319

    views

    191

    downloads

    0

    comments

    3-010-EnergyInSpringMassSystem-ModlingScenario
    As a way to synthesize the effects of damping and forcing terms, this activity is meant to encourage students to explore how different forcing terms will change the total energy in a mass-spring system.
    Modeling Scenario
    289

    views

    169

    downloads

    0

    comments

    3-009-BallDropInWater-ModelingScenario
    We conduct an analysis of a falling ball in liquid to determine its terminal velocity and to ascertain just what radius ball for a given mass density is necessary to attain a designated terminal velocity.
    Modeling Scenario
    268

    views

    418

    downloads

    0

    comments

    3-090-OneSpringMass-ModelingScenario
    We lead students through building a mathematical model for a single mass (bob)-spring system that is hanging vertically. We also lead the students, using data that they collect together with their model to approximate the value of the spring...
    Potential Scenario
    171

    views

    80

    downloads

    0

    comments

    2017-Ole_Witt-Hansen-Examples Of Differential Equations In Physics
    This is an article from the author’s homepage. The work contains fundamental and basic background and derivation of the differential equation models for a number of phenomena.
    Modeling Scenario
    371

    views

    292

    downloads

    0

    comments

    1-142-WaterBottles-ModelingScenario
    This project involves the application of Newton's law of cooling to the study of insulated water bottles. Students have the option to conduct experiments with their own bottles outside of class or use data included in the student version.
    Modeling Scenario
    513

    views

    178

    downloads

    0

    comments

    3-033-S-TimeUpTimeDown-ModelingScenario
    We seek to compare for the time a projectile takes to go vertically up with the time it takes to return to its starting position.
    Modeling Scenario
    352

    views

    221

    downloads

    0

    comments

    1-045-TimeOfDeath-ModelingScenario
    Students are asked to determine the time of death given both environmental temperature situations and two observations of body temperature under several different circumstances.
    Modeling Scenario
    348

    views

    218

    downloads

    0

    comments

    1-043-CoolingUpAndDown-ModelingScenario
    We consider modeling the attempt of an air conditioner to cool a room to a ``constant'' temperature.
    Modeling Scenario
    245

    views

    157

    downloads

    0

    comments

    1-068-WaterBottleCooling-ModelingScenario
    Students create of a differential equation describing how fluid in a water bottle will change its temperature to approach the ambient temperature in a room.
    Modeling Scenario
    297

    views

    406

    downloads

    0

    comments

    3-060-DataToDifferentialEquation-ModelingScenario
    Students use knowledge of second-order linear differential equations in conjunction with physical intuition of spring-mass systems to estimate the damping coefficient and spring constant from data.
    Modeling Scenario
    293

    views

    181

    downloads

    0

    comments

    3-075-RLCCircuits-ModelingScenario
    We introduce the basics of RLC circuits, defining the terms of inductance, resistance, and capacitance in a circuit in which an induced voltage created a current running through these devices.
    Modeling Scenario
    268

    views

    143

    downloads

    0

    comments

    3-091-SpringModeling-ModelingScenario
    In this lab students will collect data on their spring mass systems and compare their empirical models to their theoretical ones—giving them an opportunity to actually test a model against data.
    Modeling Scenario
    377

    views

    441

    downloads

    0

    comments

    1-011A-Kinetics-ModelingScenario
    We help students see the connection between college level chemistry course work and their differential equations coursework. We do this through modeling kinetics, or rates of chemical reaction.