Resources

Text Search:
Applied Filters
    Modeling Scenario
    289

    views

    169

    downloads

    0

    comments

    3-009-BallDropInWater-ModelingScenario
    We conduct an analysis of a falling ball in liquid to determine its terminal velocity and to ascertain just what radius ball for a given mass density is necessary to attain a designated terminal velocity.
    Modeling Scenario
    333

    views

    160

    downloads

    0

    comments

    3-102-SpringMassDamped-ModelingScenario
    Students build a model based on their perceptions of what the solution should look like for a simple spring mass system with damping.
    Modeling Scenario
    989

    views

    2108

    downloads

    0

    comments

    3-030-SecondOrderIntro-ModelingScenario
    We outline the solution strategies involved in solving second-order, linear, constant coefficient ordinary differential equations, both homogeneous and nonhomogeneous and offer many application and modeling activities.
    Modeling Scenario
    399

    views

    419

    downloads

    0

    comments

    3-101-SpringMassFirstTry-NoResistance-ModelingScenario
    Students build a model based on their perceptions of what the solution should look like for a simple spring mass system with no damping.
    Modeling Scenario
    213

    views

    141

    downloads

    0

    comments

    3-140-TwoSpringsOneMassFixedEnds-ModelingScenario
    Students build a model of a two spring, single mass with fixed end configuration and then plot solutions to experience the motion.
    Modeling Scenario
    352

    views

    221

    downloads

    0

    comments

    1-045-TimeOfDeath-ModelingScenario
    Students are asked to determine the time of death given both environmental temperature situations and two observations of body temperature under several different circumstances.
    Modeling Scenario
    994

    views

    1536

    downloads

    0

    comments

    3-016-FallingCoffeeFilters-ModelingScenario
    We are given data on the time and position of a stack of coffee filters as it falls to the ground. We attempt to model the falling mass and we confront the different resistance terms and models.
    Modeling Scenario
    1155

    views

    626

    downloads

    0

    comments

    3-065-UpDown-ModelingScenario
    We model the height of a launched object which is subject to resistance proportional to velocity during its flight. We ask questions about the motion as well, e.g., highest point or apex and terminal velocity.
    Modeling Scenario
    335

    views

    149

    downloads

    0

    comments

    1-105-AnimalFall-ModelingScenario
    This project uses Newton's Second Law of Motion to model a falling animal with a resistance term proportional to cross sectional area of the animal, presumed to be spherical in shape.
    Modeling Scenario
    319

    views

    191

    downloads

    0

    comments

    3-010-EnergyInSpringMassSystem-ModlingScenario
    As a way to synthesize the effects of damping and forcing terms, this activity is meant to encourage students to explore how different forcing terms will change the total energy in a mass-spring system.
    Modeling Scenario
    390

    views

    418

    downloads

    0

    comments

    3-001-SpringMassDataAnalysis-ModelingScenario
    We offer data on position of a mass at end of spring over time where the spring mass configuration has damping due to taped flat index cards at the bottom of the mass. Modeling of a spring mass configuration and estimation of parameters are the core.
    Modeling Scenario
    610

    views

    820

    downloads

    0

    comments

    3-002-ModelsMotivatingSecondOrder-ModelingScenario
    Ordinary differential equations involve second derivatives and second derivatives appear in many contexts, chief among them are the study of forces and resulting motion. This is principally because of Newton's Second Law of Motion.
    Modeling Scenario
    260

    views

    185

    downloads

    0

    comments

    1-130-AspirinAbsorption-ModelingScenario
    We model the amount of aspirin absorbed by the human body at a constant rate. This is a ``zero-order reaction'' in the language of pharmacokinetics -- the study of how drugs move in the body.
    Modeling Scenario
    268

    views

    143

    downloads

    0

    comments

    3-091-SpringModeling-ModelingScenario
    In this lab students will collect data on their spring mass systems and compare their empirical models to their theoretical ones—giving them an opportunity to actually test a model against data.
    Modeling Scenario
    334

    views

    123

    downloads

    0

    comments

    1-131-CaffeineElimination-ModelingScenario
    We model the concentration of caffeine eliminated from the human body at a rate proportional to the concentration. This is a ``first-order reaction'' in the language of pharmacokinetics -- the study of how drugs move in the body.
    Modeling Scenario
    297

    views

    406

    downloads

    0

    comments

    3-060-DataToDifferentialEquation-ModelingScenario
    Students use knowledge of second-order linear differential equations in conjunction with physical intuition of spring-mass systems to estimate the damping coefficient and spring constant from data.
    Modeling Scenario
    277

    views

    169

    downloads

    0

    comments

    3-026-SpringInverseProblem-ModelingScenario
    We are given data on the position of a mass in an oscillating spring mass system and we seek to discover approaches to estimating an unknown parameter.
    Modeling Scenario
    336

    views

    537

    downloads

    0

    comments

    1-132-DigoxinElimination-ModelingScenario
    We model the concentration of digoxin eliminated from the human body at a rate proportional to the concentration. This is a ``first-order reaction'' in the language of pharmacokinetics -- the study of how drugs move in the body.
    Modeling Scenario
    243

    views

    123

    downloads

    0

    comments

    3-040-FirstPassageTime-ModelingScenario
    We apply the notions of dampedness to second order, linear, constant coefficient, homogeneous differential equations used to model a spring mass dashpot system and introduce the notion of first passage time through 0 value with several applications.
    Modeling Scenario
    477

    views

    194

    downloads

    0

    comments

    5-012-LipoproteinModeling-ModelingScenario
    Data from a study on the amounts of low-density-lipoprotein (LDL), form of cholesterol, in blood plasma is presented. Students build, validate, and use a compartment model of the kinetic exchange of the LDL between body tissue and blood plasma.