Resources

Text Search:
Applied Filters
    Modeling Scenario
    666

    views

    713

    downloads

    0

    comments

    3-043-BallisticModeling-SpongeDart-ModelingScenario
    The goal of this project is for students to develop, analyze, and compare three different models for the flight of a sponge dart moving under the influences of gravity and air resistance.
    Modeling Scenario
    205

    views

    213

    downloads

    0

    comments

    3-095-ShotInWater-ModelingScenario
    This project uses Newton's Second Law of Motion in conjunction with a quadratic model for the resistance experienced by a bullet moving through water to analyze a classic action movie scene.
    Modeling Scenario
    1093

    views

    179

    downloads

    0

    comments

    3-051-ProjectileMotions-ModelingScenario
    We consider several instances of projectile flight without resistance, one on level ground and one from edge of cliff to determine maximum distance and placement.
    Modeling Scenario
    513

    views

    178

    downloads

    0

    comments

    3-033-S-TimeUpTimeDown-ModelingScenario
    We seek to compare for the time a projectile takes to go vertically up with the time it takes to return to its starting position.
    Potential Scenario
    171

    views

    80

    downloads

    0

    comments

    2017-Ole_Witt-Hansen-Examples Of Differential Equations In Physics
    This is an article from the author’s homepage. The work contains fundamental and basic background and derivation of the differential equation models for a number of phenomena.
    Modeling Scenario
    1155

    views

    626

    downloads

    0

    comments

    3-065-UpDown-ModelingScenario
    We model the height of a launched object which is subject to resistance proportional to velocity during its flight. We ask questions about the motion as well, e.g., highest point or apex and terminal velocity.
    Modeling Scenario
    306

    views

    268

    downloads

    0

    comments

    3-013-WhiffleBallFall-ModelingScenario
    We are given data on the time and position of a whiffle ball as it falls to the ground. We attempt to model the falling ball and we confront the different resistance terms and models.
    Modeling Scenario
    293

    views

    181

    downloads

    0

    comments

    3-075-RLCCircuits-ModelingScenario
    We introduce the basics of RLC circuits, defining the terms of inductance, resistance, and capacitance in a circuit in which an induced voltage created a current running through these devices.
    Modeling Scenario
    994

    views

    1536

    downloads

    0

    comments

    3-016-FallingCoffeeFilters-ModelingScenario
    We are given data on the time and position of a stack of coffee filters as it falls to the ground. We attempt to model the falling mass and we confront the different resistance terms and models.
    Modeling Scenario
    335

    views

    149

    downloads

    0

    comments

    1-105-AnimalFall-ModelingScenario
    This project uses Newton's Second Law of Motion to model a falling animal with a resistance term proportional to cross sectional area of the animal, presumed to be spherical in shape.
    Modeling Scenario
    390

    views

    418

    downloads

    0

    comments

    3-001-SpringMassDataAnalysis-ModelingScenario
    We offer data on position of a mass at end of spring over time where the spring mass configuration has damping due to taped flat index cards at the bottom of the mass. Modeling of a spring mass configuration and estimation of parameters are the core.
    Modeling Scenario
    289

    views

    169

    downloads

    0

    comments

    3-009-BallDropInWater-ModelingScenario
    We conduct an analysis of a falling ball in liquid to determine its terminal velocity and to ascertain just what radius ball for a given mass density is necessary to attain a designated terminal velocity.
    Modeling Scenario
    296

    views

    293

    downloads

    0

    comments

    3-035-StadiumDesign-ModelingScenario
    For a given baseball playing field outline how high must the outfield fence be at each point in order to make a homerun equally likely in all fair directions?
    Modeling Scenario
    610

    views

    820

    downloads

    0

    comments

    3-002-ModelsMotivatingSecondOrder-ModelingScenario
    Ordinary differential equations involve second derivatives and second derivatives appear in many contexts, chief among them are the study of forces and resulting motion. This is principally because of Newton's Second Law of Motion.
    Modeling Scenario
    358

    views

    287

    downloads

    0

    comments

    3-011-EulerBallThrowing-ModelingScenario
    If a tennis ball is thrown through the air it will hit the ground due to gravity. Using Euler's method, write a short script (Python, Matlab, R, etc.) to find the trajectory of the ball which will maximize the distance the ball lands from the...
    Modeling Scenario
    268

    views

    418

    downloads

    0

    comments

    3-090-OneSpringMass-ModelingScenario
    We lead students through building a mathematical model for a single mass (bob)-spring system that is hanging vertically. We also lead the students, using data that they collect together with their model to approximate the value of the spring...
    Modeling Scenario
    333

    views

    160

    downloads

    0

    comments

    3-102-SpringMassDamped-ModelingScenario
    Students build a model based on their perceptions of what the solution should look like for a simple spring mass system with damping.
    Modeling Scenario
    280

    views

    149

    downloads

    0

    comments

    3-063-FallingBuildingIce-ModelingScenario
    We model the fall of a piece of ice which is falling from a high building in New York City.
    Free Online Textbook
    211

    views

    83

    downloads

    0

    comments

    2018-Eduardo-Sontag-Lecture_Notes_on_Mathematical_Systems_Biology
    I am often asked if it is OK to use these notes in courses at other universities. The answer is “of course!” though I strongly suggest that a link to my website be provided, so that students can always access the current version.