Resources

Text Search:
Applied Filters
    Modeling Scenario
    289

    views

    169

    downloads

    0

    comments

    3-009-BallDropInWater-ModelingScenario
    We conduct an analysis of a falling ball in liquid to determine its terminal velocity and to ascertain just what radius ball for a given mass density is necessary to attain a designated terminal velocity.
    Modeling Scenario
    305

    views

    264

    downloads

    0

    comments

    3-013-WhiffleBallFall-ModelingScenario
    We are given data on the time and position of a whiffle ball as it falls to the ground. We attempt to model the falling ball and we confront the different resistance terms and models.
    Modeling Scenario
    993

    views

    1536

    downloads

    0

    comments

    3-016-FallingCoffeeFilters-ModelingScenario
    We are given data on the time and position of a stack of coffee filters as it falls to the ground. We attempt to model the falling mass and we confront the different resistance terms and models.
    Potential Scenario
    139

    views

    47

    downloads

    0

    comments

    2003-Bohren-Dimensional analysis-falling bodies--fine art of not solving differential equations
    Dimensional analysis is a simple, physically transparent and intuitive method for obtaining approximate solutions to physics problems, especially in mechanics.
    Modeling Scenario
    342

    views

    270

    downloads

    0

    comments

    3-017-StackedCoffeeFiltersFalling-ModelingScenario
    Data on free falling 2, 4, 6, and 8 stacked coffee filters is offered. Students form a model using a resistance term proportional to velocity, velocity squared, or velocity to some general power. Parameters need to be estimated and models compared.
    Modeling Scenario
    295

    views

    155

    downloads

    0

    comments

    Modeling Scenario
    387

    views

    549

    downloads

    0

    comments

    3-019-ShuttleCockFalling-ModelingScenario
    We are given data on the time and position of a shuttlecock as it falls to the ground from a set height. We attempt to model the falling object and we confront the different resistance terms and models.
    Modeling Scenario
    290

    views

    208

    downloads

    0

    comments

    3-044-DeepWell-ModelingScenario
    We drop a pebble in a deep well. Given the time elapsed from release of the pebble until we hear the splash determine the depth of the well.
    Potential Scenario
    100

    views

    46

    downloads

    0

    comments

    1994-T_Gruszka-A Balloon Experiment in the Classroom
    The following experiment involves a balloon, a stopwatch, and a measurement device such as a meter stick,
    Article or Presentation
    241

    views

    59

    downloads

    0

    comments

    2011-Brian_Winkel-Cross_coursing_in_mathematics-physical_modeling_in_differential_equations_crossing_to_discrete_dynamical_systems
    We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course.
    Modeling Scenario
    249

    views

    117

    downloads

    0

    comments

    3-041-UpDown-ModelingScenario
    Shoot a projectile straight up in the air. Determine maximum height the projectile will go. Consider time T(a) (0 < a < 1) it takes between when the projectile passes distance a.H going up and then coming down. Develop T(a) as a function of a.
    Modeling Scenario
    335

    views

    149

    downloads

    0

    comments

    1-105-AnimalFall-ModelingScenario
    This project uses Newton's Second Law of Motion to model a falling animal with a resistance term proportional to cross sectional area of the animal, presumed to be spherical in shape.
    Modeling Scenario
    255

    views

    283

    downloads

    0

    comments

    1-055-WaterFallingInCone-ModelingScenario
    We offer an opportunity to model the height of a falling body of water in a right circular cone (funnel) and to estimate an appropriate parameter based on data collected from a video of the experiment found on YouTube.
    Modeling Scenario
    245

    views

    141

    downloads

    0

    comments

    3-027-BobbingDropping-ModelingScenario
    We present two exercises in which we ask students to model (1) falling object experiencing terminal velocity and (2) bobbing block of wood in liquid. We model the motion using Newton's Second Law of Motion and Archimedes' Principle.
    Potential Scenario
    215

    views

    46

    downloads

    0

    comments

    1980-Peastrel-Lynch-Armenti-Terminal velocity of a shuttlecock in vertical fall
    We have performed a straightforward vertical fall experiment for a case where the effects of air resistance are important and directly measurable.
    Article or Presentation
    164

    views

    51

    downloads

    0

    comments

    1980-Peastrel-Lynch-Armenti-Terminal_velocity_of_a_shuttlecock_in_vertical_fall
    This paper offers a set of data on a falling shuttlecock (the moving object in badminton) in air. How the authors collected the data is described fully and can be replicated easily by modern equipment.
    Modeling Scenario
    280

    views

    148

    downloads

    0

    comments

    3-063-FallingBuildingIce-ModelingScenario
    We model the fall of a piece of ice which is falling from a high building in New York City.
    Modeling Scenario
    244

    views

    138

    downloads

    0

    comments

    6-030-SaltAndTorricelli-ModelingScenario
    We build on a model for the height of a falling column of water with a small hole in the container at the bottom of the column of water. We use data from one video of a falling column of water.
    Modeling Scenario
    259

    views

    185

    downloads

    0

    comments

    1-130-AspirinAbsorption-ModelingScenario
    We model the amount of aspirin absorbed by the human body at a constant rate. This is a ``zero-order reaction'' in the language of pharmacokinetics -- the study of how drugs move in the body.
    Potential Scenario
    130

    views

    66

    downloads

    0

    comments

    1999-F_Brauer-What Goes Up Must Come Down
    This paper is a wonderfully general analysis of the following, “It is natural to ask whether a particle propelled upwards takes longer to fall to earth from its maximum height than it takes to rise to this maximum height for frictional forces.