Resources

Text Search:
Applied Filters
    Modeling Scenario
    306

    views

    268

    downloads

    0

    comments

    3-013-WhiffleBallFall-ModelingScenario
    We are given data on the time and position of a whiffle ball as it falls to the ground. We attempt to model the falling ball and we confront the different resistance terms and models.
    Modeling Scenario
    994

    views

    1536

    downloads

    0

    comments

    3-016-FallingCoffeeFilters-ModelingScenario
    We are given data on the time and position of a stack of coffee filters as it falls to the ground. We attempt to model the falling mass and we confront the different resistance terms and models.
    Modeling Scenario
    290

    views

    209

    downloads

    0

    comments

    3-044-DeepWell-ModelingScenario
    We drop a pebble in a deep well. Given the time elapsed from release of the pebble until we hear the splash determine the depth of the well.
    Potential Scenario
    140

    views

    49

    downloads

    0

    comments

    2003-Bohren-Dimensional analysis-falling bodies--fine art of not solving differential equations
    Dimensional analysis is a simple, physically transparent and intuitive method for obtaining approximate solutions to physics problems, especially in mechanics.
    Modeling Scenario
    344

    views

    278

    downloads

    0

    comments

    3-017-StackedCoffeeFiltersFalling-ModelingScenario
    Data on free falling 2, 4, 6, and 8 stacked coffee filters is offered. Students form a model using a resistance term proportional to velocity, velocity squared, or velocity to some general power. Parameters need to be estimated and models compared.
    Potential Scenario
    131

    views

    67

    downloads

    0

    comments

    1999-F_Brauer-What Goes Up Must Come Down
    This paper is a wonderfully general analysis of the following, “It is natural to ask whether a particle propelled upwards takes longer to fall to earth from its maximum height than it takes to rise to this maximum height for frictional forces.
    Modeling Scenario
    391

    views

    558

    downloads

    0

    comments

    3-019-ShuttleCockFalling-ModelingScenario
    We are given data on the time and position of a shuttlecock as it falls to the ground from a set height. We attempt to model the falling object and we confront the different resistance terms and models.
    Modeling Scenario
    296

    views

    158

    downloads

    0

    comments

    Modeling Scenario
    220

    views

    227

    downloads

    0

    comments

    1-063-ThreeHoleColumnOfWater-ModelingScenario
    We consider a column of water with three holes or spigots through which water can exit and ask students to model the height of the column of water over time.
    Modeling Scenario
    250

    views

    267

    downloads

    0

    comments

    1-090-EmptySphericalTank-ModelingScenario
    We model the emptying of water from a spherical tank. First, we pump out water at a constant rate. Second, we allow the water to exit through a small hole in the bottom of the tank. We seek to determine how fast the water level is falling in both...
    Modeling Scenario
    336

    views

    139

    downloads

    0

    comments

    1-115-ModelingWithFirstOrderODEs-ModelingScenario
    Several models using first order differential equations are offered with some questions on formulating a differential equations model with solutions provided.
    Potential Scenario
    103

    views

    47

    downloads

    0

    comments

    1994-T_Gruszka-A Balloon Experiment in the Classroom
    The following experiment involves a balloon, a stopwatch, and a measurement device such as a meter stick,
    Modeling Scenario
    249

    views

    117

    downloads

    0

    comments

    3-041-UpDown-ModelingScenario
    Shoot a projectile straight up in the air. Determine maximum height the projectile will go. Consider time T(a) (0 < a < 1) it takes between when the projectile passes distance a.H going up and then coming down. Develop T(a) as a function of a.
    Modeling Scenario
    246

    views

    142

    downloads

    0

    comments

    3-027-BobbingDropping-ModelingScenario
    We present two exercises in which we ask students to model (1) falling object experiencing terminal velocity and (2) bobbing block of wood in liquid. We model the motion using Newton's Second Law of Motion and Archimedes' Principle.
    Modeling Scenario
    214

    views

    116

    downloads

    0

    comments

    3-020-ChordPathTime-ModelingScenario
    Using Newton's Second Law of motion we can determine the time it takes for a mass to slide along a chord of a vertical circle from high point to any point along the circle. Initially, the result is nonintuitive and challenging to understand.
    Modeling Scenario
    251

    views

    185

    downloads

    0

    comments

    1-057-FiguringFluidFlow-ModelingScenario
    We propose three differential equations models for the height of a column of falling water as the water exits a small bore hole at the bottom of the cylinder and ask students to determine which model is the best of the three.
    Modeling Scenario
    250

    views

    190

    downloads

    0

    comments

    1-083-FallingMeteorites-ModelingScenario
    After introducing the solution to the ordinary differential equation which models a falling object with drag (first-order, non-linear, separable), students will consider generalizing the model to a falling and disintegrating meteorite. The focus...
    Modeling Scenario
    289

    views

    169

    downloads

    0

    comments

    3-009-BallDropInWater-ModelingScenario
    We conduct an analysis of a falling ball in liquid to determine its terminal velocity and to ascertain just what radius ball for a given mass density is necessary to attain a designated terminal velocity.
    Modeling Scenario
    280

    views

    149

    downloads

    0

    comments

    3-063-FallingBuildingIce-ModelingScenario
    We model the fall of a piece of ice which is falling from a high building in New York City.
    Modeling Scenario
    335

    views

    149

    downloads

    0

    comments

    1-105-AnimalFall-ModelingScenario
    This project uses Newton's Second Law of Motion to model a falling animal with a resistance term proportional to cross sectional area of the animal, presumed to be spherical in shape.