Resources

Text Search:
Applied Filters
    Article or Presentation
    184

    views

    545

    downloads

    1

    comments

    2020-TeachingModule-ModelingFallingColumnOfWater
    We discuss how to model a falling column of water empirically and analytically from first principles in physics laws.
    Modeling Scenario
    966

    views

    1522

    downloads

    0

    comments

    3-016-FallingCoffeeFilters-ModelingScenario
    We are given data on the time and position of a stack of coffee filters as it falls to the ground. We attempt to model the falling mass and we confront the different resistance terms and models.
    Modeling Scenario
    321

    views

    260

    downloads

    0

    comments

    3-017-StackedCoffeeFiltersFalling-ModelingScenario
    Data on free falling 2, 4, 6, and 8 stacked coffee filters is offered. Students form a model using a resistance term proportional to velocity, velocity squared, or velocity to some general power. Parameters need to be estimated and models compared.
    Modeling Scenario
    205

    views

    39

    downloads

    0

    comments

    1-141-MMGameRevisited-ModelingScenario
    It is assumed that the probability of an M&M chocolate, when tossed, falling on the M side is 0.5 The goal is to find a probability distribution of the probability q which is Pr(randomly chosen M&M falling M up when tossed).
    Modeling Scenario
    357

    views

    526

    downloads

    0

    comments

    3-019-ShuttleCockFalling-ModelingScenario
    We are given data on the time and position of a shuttlecock as it falls to the ground from a set height. We attempt to model the falling object and we confront the different resistance terms and models.
    Modeling Scenario
    259

    views

    245

    downloads

    0

    comments

    3-070-FallingInWater-ModelingScenario
    We model a small canister with ballast to keep it vertical as it falls through water in a graduated cylinder filled with water. We suggest several models in terms of resistance due to the media and estimate appropriate parameters.
    Modeling Scenario
    406

    views

    1014

    downloads

    0

    comments

    1-015-Torricelli-ModelingScenario
    We help students develop a model (Torricelli's Law) for the height of a falling column of water with a small hole in the container at the bottom of the column of water through which water exits the column.
    Modeling Scenario
    222

    views

    113

    downloads

    0

    comments

    3-041-UpDown-ModelingScenario
    Shoot a projectile straight up in the air. Determine maximum height the projectile will go. Consider time T(a) (0 < a < 1) it takes between when the projectile passes distance a.H going up and then coming down. Develop T(a) as a function of a.
    Modeling Scenario
    237

    views

    257

    downloads

    0

    comments

    1-055-WaterFallingInCone-ModelingScenario
    We offer an opportunity to model the height of a falling body of water in a right circular cone (funnel) and to estimate an appropriate parameter based on data collected from a video of the experiment found on YouTube.
    Modeling Scenario
    203

    views

    113

    downloads

    0

    comments

    3-020-ChordPathTime-ModelingScenario
    Using Newton's Second Law of motion we can determine the time it takes for a mass to slide along a chord of a vertical circle from high point to any point along the circle. Initially, the result is nonintuitive and challenging to understand.
    Modeling Scenario
    235

    views

    179

    downloads

    0

    comments

    1-057-FiguringFluidFlow-ModelingScenario
    We propose three differential equations models for the height of a column of falling water as the water exits a small bore hole at the bottom of the cylinder and ask students to determine which model is the best of the three.