Resources

Text Search:
Applied Filters
    Modeling Scenario
    245

    views

    187

    downloads

    0

    comments

    1-083-FallingMeteorites-ModelingScenario
    After introducing the solution to the ordinary differential equation which models a falling object with drag (first-order, non-linear, separable), students will consider generalizing the model to a falling and disintegrating meteorite. The focus...
    Modeling Scenario
    278

    views

    144

    downloads

    0

    comments

    3-063-FallingBuildingIce-ModelingScenario
    We model the fall of a piece of ice which is falling from a high building in New York City.
    Modeling Scenario
    301

    views

    264

    downloads

    0

    comments

    3-013-WhiffleBallFall-ModelingScenario
    We are given data on the time and position of a whiffle ball as it falls to the ground. We attempt to model the falling ball and we confront the different resistance terms and models.
    Modeling Scenario
    988

    views

    1535

    downloads

    0

    comments

    3-016-FallingCoffeeFilters-ModelingScenario
    We are given data on the time and position of a stack of coffee filters as it falls to the ground. We attempt to model the falling mass and we confront the different resistance terms and models.
    Modeling Scenario
    383

    views

    549

    downloads

    0

    comments

    3-019-ShuttleCockFalling-ModelingScenario
    We are given data on the time and position of a shuttlecock as it falls to the ground from a set height. We attempt to model the falling object and we confront the different resistance terms and models.
    Modeling Scenario
    332

    views

    136

    downloads

    0

    comments

    1-115-ModelingWithFirstOrderODEs-ModelingScenario
    Several models using first order differential equations are offered with some questions on formulating a differential equations model with solutions provided.
    Modeling Scenario
    242

    views

    138

    downloads

    0

    comments

    3-027-BobbingDropping-ModelingScenario
    We present two exercises in which we ask students to model (1) falling object experiencing terminal velocity and (2) bobbing block of wood in liquid. We model the motion using Newton's Second Law of Motion and Archimedes' Principle.
    Modeling Scenario
    284

    views

    190

    downloads

    0

    comments

    3-055-FloatingBox-ModelingScenario
    In this scenario, we lead students through the process of building a mathematical model for a floating rectangular box that is bobbing up and down.
    Modeling Scenario
    286

    views

    163

    downloads

    0

    comments

    3-009-BallDropInWater-ModelingScenario
    We conduct an analysis of a falling ball in liquid to determine its terminal velocity and to ascertain just what radius ball for a given mass density is necessary to attain a designated terminal velocity.
    Modeling Scenario
    340

    views

    269

    downloads

    0

    comments

    3-017-StackedCoffeeFiltersFalling-ModelingScenario
    Data on free falling 2, 4, 6, and 8 stacked coffee filters is offered. Students form a model using a resistance term proportional to velocity, velocity squared, or velocity to some general power. Parameters need to be estimated and models compared.
    Modeling Scenario
    241

    views

    134

    downloads

    0

    comments

    6-030-SaltAndTorricelli-ModelingScenario
    We build on a model for the height of a falling column of water with a small hole in the container at the bottom of the column of water. We use data from one video of a falling column of water.
    Modeling Scenario
    1151

    views

    623

    downloads

    0

    comments

    3-065-UpDown-ModelingScenario
    We model the height of a launched object which is subject to resistance proportional to velocity during its flight. We ask questions about the motion as well, e.g., highest point or apex and terminal velocity.
    Modeling Scenario
    230

    views

    46

    downloads

    0

    comments

    1-141-MMGameRevisited-ModelingScenario
    It is assumed that the probability of an M&M chocolate, when tossed, falling on the M side is 0.5 The goal is to find a probability distribution of the probability q which is Pr(randomly chosen M&M falling M up when tossed).
    Modeling Scenario
    291

    views

    154

    downloads

    0

    comments

    Modeling Scenario
    285

    views

    204

    downloads

    0

    comments

    3-044-DeepWell-ModelingScenario
    We drop a pebble in a deep well. Given the time elapsed from release of the pebble until we hear the splash determine the depth of the well.
    Modeling Scenario
    221

    views

    324

    downloads

    0

    comments

    9-015-UnearthingTruth-ModelingScenario
    This project introduces \textit{electrical resistivity tomography}, a technique of interest for geophysical imaging, used to produce images of underground features or structures by using electrical current.
    Modeling Scenario
    338

    views

    392

    downloads

    0

    comments

    3-006-Buoyancy-ModelingScenario
    We offer data from a physical experiment in which the depth of a container in water is measured and ask students to build a model of buoyancy based on Newton's Second Law of Motion and a Free Body Diagram. We ask students to estimate the parameters.
    Modeling Scenario
    349

    views

    342

    downloads

    0

    comments

    4-039-FallingDarts-ModelingScenario
    we develop, solve, and analyze a second order differential equation model for free fall incorporating air resistance. Students solve the model using two methods -- reduction of order and separation of variables, and method of undetermined...
    Modeling Scenario
    163

    views

    81

    downloads

    0

    comments

    1-036-NeutralBuoyancy-ModelingScenario
    An object may hang suspended at, say, ten foot depth in a column of water if at ten feet underwater the density of the object equals the density of water. We study this phenomenon
    Modeling Scenario
    331

    views

    149

    downloads

    0

    comments

    1-105-AnimalFall-ModelingScenario
    This project uses Newton's Second Law of Motion to model a falling animal with a resistance term proportional to cross sectional area of the animal, presumed to be spherical in shape.