Resources

Text Search:
Applied Filters
    Modeling Scenario
    358

    views

    356

    downloads

    0

    comments

    4-039-FallingDarts-ModelingScenario
    we develop, solve, and analyze a second order differential equation model for free fall incorporating air resistance. Students solve the model using two methods -- reduction of order and separation of variables, and method of undetermined...
    Modeling Scenario
    358

    views

    287

    downloads

    0

    comments

    3-011-EulerBallThrowing-ModelingScenario
    If a tennis ball is thrown through the air it will hit the ground due to gravity. Using Euler's method, write a short script (Python, Matlab, R, etc.) to find the trajectory of the ball which will maximize the distance the ball lands from the...
    Modeling Scenario
    250

    views

    190

    downloads

    0

    comments

    1-083-FallingMeteorites-ModelingScenario
    After introducing the solution to the ordinary differential equation which models a falling object with drag (first-order, non-linear, separable), students will consider generalizing the model to a falling and disintegrating meteorite. The focus...
    Modeling Scenario
    256

    views

    284

    downloads

    0

    comments

    1-055-WaterFallingInCone-ModelingScenario
    We offer an opportunity to model the height of a falling body of water in a right circular cone (funnel) and to estimate an appropriate parameter based on data collected from a video of the experiment found on YouTube.
    Modeling Scenario
    290

    views

    195

    downloads

    0

    comments

    3-055-FloatingBox-ModelingScenario
    In this scenario, we lead students through the process of building a mathematical model for a floating rectangular box that is bobbing up and down.
    Modeling Scenario
    280

    views

    167

    downloads

    0

    comments

    3-045-RampBounce-ModelingScenario
    Students build two projectile motion models (1) a one-dimensional model for a vertically falling ball from a fixed distance until it hits an inclined ramp and (2) a two-dimensional projectile motion model of the ball bouncing off the ramp.