Resources

Text Search:
Applied Filters
    Modeling Scenario
    242

    views

    554

    downloads

    0

    comments

    4-020-AnIEDBlast-ModelingScenario
    These three exercises offer students a chance to model with second order ordinary differential equations, how they might incorporate a spring-mass system into a larger model, and how they can use the model to determine the results of a dynamical...
    Modeling Scenario
    255

    views

    274

    downloads

    0

    comments

    1-081-TumorGrowth-ModelingScenario
    Students will transform, solve, and interpret a tumor growth scenario using non-linear differential equation models. Two population growth models (Gompertz and logistic) are applied to model tumor growth.
    Modeling Scenario
    991

    views

    2110

    downloads

    0

    comments

    3-030-SecondOrderIntro-ModelingScenario
    We outline the solution strategies involved in solving second-order, linear, constant coefficient ordinary differential equations, both homogeneous and nonhomogeneous and offer many application and modeling activities.
    Modeling Scenario
    549

    views

    279

    downloads

    0

    comments

    1-104A-T-InfectionRisk-ModelingScenario
    This project is designed to examine differences between the exponential and logistic growth models in biology and how to apply these models in solving epidemic questions and comparing to actual disease data sets.
    Modeling Scenario
    312

    views

    139

    downloads

    0

    comments

    1-104-InfectionRisk-ModelingScenario
    This project is designed to examine differences between the exponential and logistic growth models in biology and how to apply these models in solving epidemic questions.
    Modeling Scenario
    222

    views

    292

    downloads

    0

    comments

    1-137-SheepGraze-ModelingScenario
    In this activity, students will apply graphical analysis (such as phase lines) to determine the long-term predictions of a differential equation model for pasture grass using two different formulas for the herbivore consumption rate.
    Modeling Scenario
    296

    views

    586

    downloads

    0

    comments

    10-100-InsectOutbreaks-ModelingScenario
    We use a system of difference equations that incorporates a temperature-dependent MPB population growth rate to model the outbreak and recovery cycle in mountain pine beetle-infested forests.
    Modeling Scenario
    311

    views

    469

    downloads

    0

    comments

    6-070-BeerBubbles-ModelingScenario
    The goal of this project is to set up and numerically solve a first-order nonlinear ordinary differential equation (ODE) system of three equations in three unknowns that models beer bubbles that form at the bottom of a glass and rise to the top.
    Modeling Scenario
    338

    views

    139

    downloads

    0

    comments

    1-115-ModelingWithFirstOrderODEs-ModelingScenario
    Several models using first order differential equations are offered with some questions on formulating a differential equations model with solutions provided.
    Modeling Scenario
    239

    views

    103

    downloads

    0

    comments

    4-065-GasInjection-ModelingScenario
    Students use programs (or create their own code) based on exponential box-scheme approximations for solving systems of nonlinear differential equations that contain small parameters for the highest derivative terms or singularities in boundary...
    Modeling Scenario
    281

    views

    167

    downloads

    0

    comments

    3-045-RampBounce-ModelingScenario
    Students build two projectile motion models (1) a one-dimensional model for a vertically falling ball from a fixed distance until it hits an inclined ramp and (2) a two-dimensional projectile motion model of the ball bouncing off the ramp.
    Modeling Scenario
    10

    views

    19

    downloads

    0

    comments

    6-050-BowlingBallPath-ModelingScenario
    This modeling scenario examines the motion of a bowling ball with the goal of understanding how various aspects of the release affect ball placement and the entry angle to the pocket, each an important factor in the frequency of strikes.
    Modeling Scenario
    194

    views

    83

    downloads

    0

    comments

    1-144-HeatCool-ModelingScenario
    We offer an opportunity to build a mathematical model using Newton's Law of Cooling for a closed plastic baggie of liquid inside a liquid container.
    Modeling Scenario
    323

    views

    347

    downloads

    0

    comments

    5-024-PhGreatLakes
    In this teaching modeling scenario, we demonstrate how lessons on salt-tank compartmental modeling can be used to predict phosphorus levels in the Great Lakes.
    Modeling Scenario
    481

    views

    371

    downloads

    1

    comments

    3-104-BungeeJumping-ModelingScenario
    In this project, students design a bungee jumping cord (cross-sectional area and length) that will keep jumpers safe. Students communicate their recommendations as a letter to a client interested in starting a bungee jumping business.
    Modeling Scenario
    260

    views

    265

    downloads

    0

    comments

    1-079-HomeHeating-ModelingScenario
    This project concerns using Newton's Law of Cooling to model the heating of a house. In particular, if one is going away for awhile, is it more economical to leave a house at a desired temperature or reheat it upon return?
    Modeling Scenario
    293

    views

    133

    downloads

    0

    comments

    1-089-SpreadOfDisease-ModelingScenario
    In this project I want to use the algebra based concept “difference quotient” to solve differential equations models with the help of Excel. That means even students with only a College Algebra background, can still enjoy differential equation...
    Modeling Scenario
    214

    views

    228

    downloads

    0

    comments

    6-075-LorenzSystemSimulation-ModelingScenario
    The Lorenz system is examined by students as a simple model of chaotic behavior or strange attractor. MATLAB code is created to find the numerical solutions of the Lorenz’ system of nonlinear ordinary differential equations using various parameters.
    Modeling Scenario
    287

    views

    220

    downloads

    0

    comments

    1-108-PoissonProcess-ModelingScenario
    In this project students learn to derive the probability density function (pdf) of the Poisson distribution and the cumulative distribution (cdf) of the waiting time. They will use them to solve problems in stochastic processes.
    Modeling Scenario
    310

    views

    236

    downloads

    0

    comments

    1-027-StochasticProcesses-ModelingScenario
    We build the infinite set of first order differential equations for modeling a stochastic process, the so-called birth and death equations. We will only need to use integrating factor solution strategy or DSolve in Mathematica for success.