Resources

Potential Scenario

2002-Fay-The Pendulum Equation

Author(s): T Fay

NA

Keywords: pendulum Fourier series Taylor series numerical solution

130 total view(s), 71 download(s)

Abstract

Resource Image We investigate the pendulum equation q’’(t) + l2 sin(q) = 0 and two approximations for it.

Citation

Researchers should cite this work as follows:

Article Context

Description

Fay, T. 2001.The Pendulum Equation.  Int. J. Math. Educ. Sci. Technology.  33(4): 505-519.

See https://www.tandfonline.com/doi/abs/10.1080/00207390210130868. Accessed 27 March 2023.

Abstract:

We investigate the pendulum equation q’’(t) + l2 sin(q) = 0 and two approximations for it. On the one hand, we suggest that the third and fifth-order Taylor series approximations for sin(q) do not yield very good differential equations to approximate the solution of the pendulum equation unless the initial conditions are appropriately chosen very small and the time interval is short. On the other, we suggest that computationally, there is no advantage taking these approximations. We further justify this by employing an approach to deriving Fourier series approximations to the pendulum equation accurate to at least eleven decimal places. Students can generate highly accurate Fourier series solutions to nonlinear equations and thus concentrate on the qualitative aspects of the model rather than the computational difficulties.

KEYWORDS: pendulum, physical, model, analysis, Taylor series, analysis, solutions, interpretation, Fourier series, phase plane, Mathematica, NDSolve, numerical solution,

 

Article Files

Authors

Author(s): T Fay

NA

Comments

Comments

There are no comments on this resource.