Resources

Potential Scenario

2008-Duran-Caginalp-Parameter optimization for differential equations in asset price forecasting

Author(s): Ahmed Duran

NA

Keywords: finance inverse problem numerical nonlinear optimization asset flow financial market dynamics market return prediction algorithm

142 total view(s), 24 download(s)

Abstract

Resource Image The optimization procedure is used in conjunction with daily market prices (MPs) and net asset values to determine the parameters for which the AFDE yield the best fit for the previous n days.

Citation

Researchers should cite this work as follows:

Article Context

Resource Type
Differential Equation Type
Technique
Qualitative Analysis
Application Area
Course
Course Level
Lesson Length
Technology
Approach
Skills

Description

Duran, Ahmet and Gunduz Caginalp. 2008. Parameter optimization for differential equations in asset price forecasting.  Optimization Methods and Software. 23: 551-574.

See https://privpapers.ssrn.com/sol3/papers.cfm?abstract_id=1145002 . Accessed 27 March 2023.

Abstract: A system of nonlinear asset flow differential equations (AFDE) gives rise to an inverse problem involving optimization of parameters that characterize an investor population. The optimization procedure is used in conjunction with daily market prices (MPs) and net asset values to determine the parameters for which the AFDE yield the best fit for the previous n days. Using these optimal parameters, the equations are computed and solved to render a forecast for MPs for the following days. For a number of closed-end funds, the results are statistically closer to the ensuing MPs than the default prediction of random walk (RW). In particular, we perform this optimization by a nonlinear computational algorithm that combines a quasi-Newton weak line search with the Broyden–Fletcher–Goldfarb–Shanno formula. We develop a nonlinear least-square technique with an initial value problem (IVP) approach for arbitrary stream data by focusing on the MP variable P since any real data for the other three variables B, ζ1, and ζ2 in the dynamical system is not available explicitly. We minimize the sum of exponentially weighted squared differences F[[Ktilde]] between the true trading prices from Day i to Day i+n−1, and the corresponding computed MPs obtained from the first row vector of the numerical solution U of the IVP with AFDE for ith optimal parameter vector, where [Ktilde] is an initial parameter vector. Here, the gradient (∇ F(x)) is approximated by using the central difference formula, and step length s is determined by the backtracking line search. One of the novel components of the proposed asset flow optimization forecast algorithm is a dynamic initial parameter pool that contains most recently used successful parameters, besides the various fixed parameters from a set of grid points in a hyper-box.

Keywords: numerical nonlinear optimization, inverse problem of parameter estimation, asset flow differential equations, financial market dynamics, market return prediction algorithm, data analysis in mathematical finance and economics

 

Article Files

Authors

Author(s): Ahmed Duran

NA

Comments

Comments

There are no comments on this resource.