QBCC Modules Sorted by Biology Content

Some QBCC modules fit into multiple categories. There are currently 13 unique QBCC modules listed multiple times in the following categories. 

List of Biology Categories

1. Anatomy - 1 module
2. Biochemistry - 2 modules
3. Botany - 0 modules
4. Cellular and Molecular Biology - 11 modules
5. Ecology - 5 modules
6. Evolution - 1 module
7. Health Science / Medicine - 1 module
8. Microbiology - 6 modules
9. Neuroscience - 0 modules
10. Nutrition / Food Science - 0 modules
11. Organismal  - 0 modules
12. Physiology - 1 module
13. Systems - 0 modules
14. Zoology - 2 modules

Modules by Category

1. Anatomy

Why does Blood Flow Change? Investigating the Math of Blood Flow Dynamics

Amy Troyer, Brandi Morgante Handzlik, Mary Phillips

Version: 1.0

This collection of activities explores the relationship between blood flow, pressure, and the factors of resistance through graphs and modeling direct and inverse variation.
Published on 06.2020
1.3K Views
1.3K Downloads
0 Adaptations
quant bio, graphing, Ratios, math, assessment, college algebra, undergraduate education, physiology, Anatomy, human biology, variation, Cardiovascular physiology, Anatomy & Physiology, lab activity, OpenStax, qbcc, manipulate equations, Understanding fractions, Choosing models, Understanding rates, Estimating answers, Use elementary functions, Create graphs, Interpret graphs, Rates and Proportions, Solving Equations and Inequalities

Back to top

2. Biochemistry

Effect of the Intestinal Protein Snakeskin on the Lifespan of Fruit Flies: A Kaplan-Meier Survival Analysissource Draft (1)

Maila Hallare, Iordanka Panayotova, Anna Salazar

Version: 1.0

In this activity, students perform the Kaplan-Meier survival analysis on raw data obtained from an experiment that explores the effect of overexpressing the Snakeskin (Ssk) protein on the lifespan of a population of fruit flies. This tight junction equivalent protein is expressed at higher levels than normal specifically in the gut and throughout the entire lifespan of the flies. Because aging guts are accompanied by both a mislocalization and a decrease in the expression levels of junctional proteins, including Ssk, it was hypothesized that overexpressing Ssk may lead to a healthier fly with a longer lifespan. This data will be analyzed in order to determine if there is a significant difference between the control flies in which no overexpression occurs and the experimental group in which Ssk is overexpressed.
Published on 02.2023
1.2K Views
119 Downloads
0 Adaptations
graphing, Biochemistry, hypothesis testing, calculus and biology, approximating areas under curves, qbcc, Cellular and Molecular Biology, Create graphs, Interpret graphs, Solving Equations and Inequalities, interpret tables, Concepts in Statistics, using statistics, chi-square analysis, survival analysis

Exploring Marine Primary Productivity with Descriptive Statistics and Graphing in Excel

Kristin Byrd

Version: 1.0 Adapted From: Exploring Marine Primary Productivity with Descriptive Statistics and Graphing in Excel v1.0

In this activity, students use real water chemistry data and descriptive statistics in Excel to examine primary productivity in an urban estuary of the Salish Sea. They will consider how actual data do or do not support expected annual trends.
Published on 01.2023
342 Views
449 Downloads
0 Adaptations
statistics, ecology, data, Excel, graphing, Biochemistry, Oceanography, marine ecosystems, marine ecology, descriptive statistics, long-term datasets, marine, Microsoft Excel, marine biology, plankton, Outliers, Marine Science, qbcc, Using Excel, phytoplankton, Create graphs, Interpret graphs, Concepts in Statistics, large dataset, explaining statistics, using statistics, Pacific Northwest, Salish Sea, primary productivity, water chemistry, estuary, graphing in Excel, formulas in Excel, chlorophyll, time-series plots, ocean

Exploring Marine Primary Productivity with Descriptive Statistics and Graphing in Excel

Marina McLeod, Jennifer Olson, Wendy Houston

Version: 1.0

In this activity, students use real water chemistry data and descriptive statistics in Excel to examine primary productivity in an urban estuary of the Salish Sea. They will consider how actual data do or do not support expected annual trends.
Published on 09.2021
1.1K Views
1.0K Downloads
1 Adaptations
statistics, ecology, data, Excel, graphing, Biochemistry, Oceanography, marine ecosystems, marine ecology, descriptive statistics, long-term datasets, marine, Microsoft Excel, marine biology, plankton, Outliers, Marine Science, qbcc, Using Excel, phytoplankton, Create graphs, Interpret graphs, Concepts in Statistics, large dataset, explaining statistics, using statistics, Pacific Northwest, Salish Sea, primary productivity, water chemistry, estuary, graphing in Excel, formulas in Excel, chlorophyll, time-series plots, ocean

Analysis of Amylase Activity

Allison Carter Burlyn, Christina Fieber, Melanie Lenahan

Version: 1.0

This lab is an exploration of enzyme function and the effects of environmental conditions on the activity of the enzyme amylase. The lab utilizes analytical and graphing skills to assess enzyme activity.
Published on 11.2020
1.2K Views
11.6K Downloads
0 Adaptations
data analysis, introductory biology, concentration, graphing, linear equations, Biochemistry, scientific method, standard curve, enzyme function, Microsoft Excel, Interpreting Graphs, enzymes, qbcc, Create graphs, Interpret graphs, Solving Equations and Inequalities, interpret tables, Amylase, Alpha-amylase, Enzyme activity, Maltose, DNS assay, Absorbance, lab report, spectrophotometry, regression line, manipulating equations, line of best fit, graphing by hand

Back to top

3. Botany
No resources found.

Back to top

4. Cellular and Molecular Biology

Effect of the Intestinal Protein Snakeskin on the Lifespan of Fruit Flies: A Kaplan-Meier Survival Analysissource Draft (1)

Maila Hallare, Iordanka Panayotova, Anna Salazar

Version: 1.0

In this activity, students perform the Kaplan-Meier survival analysis on raw data obtained from an experiment that explores the effect of overexpressing the Snakeskin (Ssk) protein on the lifespan of a population of fruit flies. This tight junction equivalent protein is expressed at higher levels than normal specifically in the gut and throughout the entire lifespan of the flies. Because aging guts are accompanied by both a mislocalization and a decrease in the expression levels of junctional proteins, including Ssk, it was hypothesized that overexpressing Ssk may lead to a healthier fly with a longer lifespan. This data will be analyzed in order to determine if there is a significant difference between the control flies in which no overexpression occurs and the experimental group in which Ssk is overexpressed.
Published on 02.2023
1.2K Views
119 Downloads
0 Adaptations
graphing, Biochemistry, hypothesis testing, calculus and biology, approximating areas under curves, qbcc, Cellular and Molecular Biology, Create graphs, Interpret graphs, Solving Equations and Inequalities, interpret tables, Concepts in Statistics, using statistics, chi-square analysis, survival analysis

Uninhibited Growth of Cells

Emily Boyce

Version: 1.0 Adapted From: Graphing bacterial growth rates: semi-log graphs v linear graphs v1.0

In this activity, students will explore the concept of binary fission, generation time, and bacterial growth curves, with an emphasis on the log phase. Students will use semi-log graphs and linear graphs to plot bacterial cell growth.
Published on 03.2022
687 Views
839 Downloads
0 Adaptations
graphing, exponential growth, Microbiology Education, microbiology, bacteria, growth rate, Undergraduate STEM education, Community College Education, qbcc, manipulate equations, Cellular and Molecular Biology, Create graphs, Interpret graphs, binary fission, semi-log graph, linear graph, growth curve, creating graphs

Fitting Exponential and Logistic Growth Models to Bacterial Cell Count Data

Adam Rumpf

Version: 1.0

In this activity, students will model a noisy set of bacterial cell count data using both exponential and logistic growth models. For each model the students will plot the data (or a linear transformation of the data) and apply the method of least squares to fit the model's parameters. Activities include both theoretical and conceptual work, exploring the properties of the differential equation models, as well as hands-on computational work, using spreadsheets to quickly process large amounts of data. This activity is meant as a capstone to the differential calculus portion of a typical undergraduate Calculus I course. It explores a biological application of a variety of differential calculus concepts, including: differential equations, numerical differentiation, optimization, and limits. Additional topics explored include semi-log plots and linear regression.
Published on 12.2021
1.4K Views
1.8K Downloads
0 Adaptations
modeling, data analysis, linear regression, graphing, Exponents, optimization, calculus, Interpreting Graphs, Functions, qbcc, Cellular and Molecular Biology, Choosing models, Understanding rates, Concepts in Statistics, measurements, manipulating equations, creating graphs, interpreting tables

Linear Regression (Excel) and Cellular Respiration for Biology, Chemistry and Mathematics

Irene Corriette, Beatriz Gonzalez, Daniela Kitanska, Henriette Mozsolits, Sheela Vemu

Version: 1.0

Students typically find linear regression analysis of data sets in a biology classroom challenging. These activities could be used in a Biology, Chemistry, Mathematics, or Statistics course. The collection provides student activity files with Excel instructions and Instructor Activity files with Excel instructions and solutions to problems. Students will be able to perform linear regression analysis, find correlation coefficient, create a scatter plot and find the r-square using MS Excel 365. Students will be able to interpret data sets, describe the relationship between biological variables, and predict the value of an output variable based on the input of an predictor variable.
Published on 12.2021
3.5K Views
1.2K Downloads
0 Adaptations
statistics, mathematics, data analysis, data, linear regression, biology, online, graphing, linear equations, Quantitative reasoning, assessment, college algebra, cell, statistical analysis, regression, OER, Algebra, chemistry, Models, correlation, Simple Linear Regression, Microsoft Excel, lab activity, experiment, Cellular Processes, ATP, qbcc, Using Excel, manipulate equations, Cellular and Molecular Biology, Concepts in Statistics, oxidation, line of best fit, explaining statistics, using statistics, Cellular Respiration, Predictions, Respiration, graphing in Excel, Linear Correlation, Exothermic Reaction, create scatter plot, Adenosine Triphosphate (ATP), germinating peas, Pre-lab activity, Student activity, Hybrid, Collecting Data, R-square, Regression Model, Function, Dependent Variables, Independent Variables, Linear Equation, Linear Equation in two variables, create graph, create equation, create regression, create plot, interpret regression, interpret data

The Perfect Brew: An Activity Demonstrating Cell Counting and Hemocytometer Use

Bridgette Kirkpatrick

Version: 1.0 Adapted From: The Perfect Brew: An Activity Demonstrating Cell Counting and Hemocytometer Use v1.0

In this activity, students will explore the use of a hemocytometer for counting cells, demonstrate the relationship between the grid seen in the microscope with volume of liquid in suspension and count cells to determine concentration.
Published on 06.2021
1.0K Views
432 Downloads
0 Adaptations
Ratios, microbiology, qbcc, Cellular and Molecular Biology, Understanding fractions, converting units, changing scales, measurements

Sizes, Scales and Specialization: Adapted to add scientific notation review

Andrea Huntoon

Version: 1.0 Adapted From: Sizes, Scales and Specialization: Using Relative Proportions and Scientific Notation to Highlight the Diversity of Cell Types v2.0

This module explores how cell size and shape varies across cell types in the human body by having students calculate relative proportions of numbers in scientific notation. The adaptation has added a review of scientific notation.
Published on 05.2021
852 Views
647 Downloads
0 Adaptations
Exponents, Ratios, Scientific Notation, cell type, qbcc, manipulate equations, Cellular and Molecular Biology, converting units, changing scales

Students examine the diversity of human cell sizes and number using scientific notation

Kimberly McClure

Version: 1.0

In this powerpoint, several of the resources from the published module 'Sizes, Scales and Specialization' are used to create a mini-module that has students examine the size and abundance of different human cell types using scientific notation.
Published on 05.2021
770 Views
226 Downloads
0 Adaptations
Exponents, Ratios, qbcc, manipulate equations, Cellular and Molecular Biology, converting units, changing scales

Sizes, Scales and Specialization: Using Relative Proportions and Scientific Notation to Highlight the Diversity of Cell Types

Heather Seitz, Jillian Marie Miller, Joseph Esquibel

Version: 2.0

This module explores how cell size and shape varies across cell types in the human body by having students calculate relative proportions of numbers in scientific notation.
Published on 04.2021
4.9K Views
1.1K Downloads
1 Adaptations
Exponents, Ratios, Cells, qbcc, manipulate equations, Cellular and Molecular Biology, Visual Accommodations, converting units, changing scales

Graphing bacterial growth rates: semi-log graphs v linear graphs

Adam Marschall Jaros, Adronisha Frazier, Beth Alford, Brandy Williams

Version: 1.0

In this activity, students will explore the concept of binary fission, generation time, and bacterial growth curves, with an emphasis on the log phase. Students will use semi-log graphs and linear graphs to plot bacterial cell growth.
Published on 02.2021
2.5K Views
1.7K Downloads
1 Adaptations
graphing, exponential growth, Microbiology Education, microbiology, bacteria, growth rate, Undergraduate STEM education, Community College Education, qbcc, manipulate equations, Cellular and Molecular Biology, Create graphs, Interpret graphs, binary fission, semi-log graph, linear graph, growth curve, creating graphs

Why Cells Change Weight: Demonstrating Linear Regression Through an Osmosis Experiment

Ashley Lamb Galloway, Stefanie L Holmes, Ashley Morgan, Mary Ann Sexton

Version: 1.0

In this activity, students will perform an experiment utilizing dialysis tubing to create cellular models to demonstrate the linear relationship between cell weight and time in varying tonicities. Videos and data sets (of faculty results) are provided for
Published on 02.2021
1.3K Views
1.1K Downloads
0 Adaptations
graphing, qbcc, Cellular and Molecular Biology, Interpret graphs, Concepts in Statistics

The Perfect Brew: An Activity Demonstrating Cell Counting and Hemocytometer Use

Angela Consani, Duane Doyle, David L Jones, Bara Sarraj, Heather Seitz

Version: 1.0

In this activity, students will explore the use of a hemocytometer for counting cells, demonstrate the relationship between the grid seen in the microscope with volume of liquid in suspension and count cells to determine concentration.
Published on 09.2020
1.7K Views
1.1K Downloads
1 Adaptations
Ratios, microbiology, qbcc, Cellular and Molecular Biology, Understanding fractions, converting units, changing scales, measurements

Why are Cells Small? Surface Area to Volume Ratio

John Howard Starnes, Christianne Baucom Nieuwsma, Jennifer Glee Buntz, Sondra Marie LoRe, Vedham Karpakakunjaram

Version: 1.0

This module explores surface area to volume ratios in a cube and sphere in relation to cell size.
Published on 04.2020
1.9K Views
947 Downloads
0 Adaptations
introductory biology, graphing, Ratios, OpenStax, qbcc, manipulate equations, Cellular and Molecular Biology, Use elementary functions, Create graphs, Interpret graphs, Rates and Proportions, Solving Equations and Inequalities, interpret tables

Back to top

5. Ecology

Modified Grassy Narrows and Muskrat Falls Dam: Hypothesis Testing and t-Tests

Sharon Maureen Homer-Drummond

Version: 3.0

Methylmercury contamination within fish populations is an important toxin that affect human, animal, and environmental health, serving as a carcinogen (cancer-causing agent) and endocrine-disruptor (compounds that in some way alter the signaling of the hormone system. The impacts of exceeding safe dietary methylmercury levels were tragically made clear in Ontario, Canada, where a First Nations community in Grassy Narrows are living with the consequences of methylmercury poisoning in the fish supply. The fish were contaminated due to the dumping of mercury in the traditional waterways of the First Nation community. In 2016, there were highly publicized protests in Muskrat Falls, Labrador, Canada, where the Inuit people raised direct concerns about the potential for a proposed Nalcor Energy hydroelectric dam, to increase mercury levels in fish in those waters, which are an integral part of their traditional diet. Despite significant protests, the project was completed in 2019 and 41 km were flooded. This module uses these real-world examples as a jumping-off point for exercises that will guide case-study driven discussion on mathematical, biological and ethical concerns.
Published on 02.2023
411 Views
353 Downloads
0 Adaptations
statistics, mathematics, biostatistics, ecology, biology, graphing, p-values, t-tests, hypothesis testing, in-class activity, Zoology, mercury biogeochemistry, biostatistics - general, fish population, qbcc, Endocrine Disruptors, Biogeochemical cycles, Interpret graphs, Solving Equations and Inequalities, Concepts in Statistics, Elementary Hypothesis Testing, Methylmercury, dams, Bioaccumulation, traditional diets, mercury, mercury poisoning, native people, indigenous population, Canada, hydroelectric, explaining statistics, using statistics, biomagnification

Grassy Narrows and Muskrat Falls Dam: The Central Limit Theorem and a t-test

Paul Miller

Version: 2.0 Adapted From: Grassy Narrows and Muskrat Falls Dam: Hypothesis Testing and t-Tests v1.0

Students are introduced to concepts of sampling distributions and hypothesis testing using a simulation applet, elementary hypothesis tests, t-tests, and p-values as they compare a given fish population for methylmercury levels (using real and hypothetical data) against real-world mercury standards.
Published on 02.2023
398 Views
411 Downloads
0 Adaptations
statistics, mathematics, biostatistics, ecology, biology, graphing, p-values, t-tests, hypothesis testing, in-class activity, Zoology, mercury biogeochemistry, biostatistics - general, fish population, qbcc, Biogeochemical cycles, Interpret graphs, Solving Equations and Inequalities, Concepts in Statistics, Elementary Hypothesis Testing, Methylmercury, dams, Bioaccumulation, traditional diets, mercury, mercury poisoning, native people, indigenous population, Canada, hydroelectric, explaining statistics, using statistics

Exploring Marine Primary Productivity with Descriptive Statistics and Graphing in Excel

Kristin Byrd

Version: 1.0 Adapted From: Exploring Marine Primary Productivity with Descriptive Statistics and Graphing in Excel v1.0

In this activity, students use real water chemistry data and descriptive statistics in Excel to examine primary productivity in an urban estuary of the Salish Sea. They will consider how actual data do or do not support expected annual trends.
Published on 01.2023
342 Views
449 Downloads
0 Adaptations
statistics, ecology, data, Excel, graphing, Biochemistry, Oceanography, marine ecosystems, marine ecology, descriptive statistics, long-term datasets, marine, Microsoft Excel, marine biology, plankton, Outliers, Marine Science, qbcc, Using Excel, phytoplankton, Create graphs, Interpret graphs, Concepts in Statistics, large dataset, explaining statistics, using statistics, Pacific Northwest, Salish Sea, primary productivity, water chemistry, estuary, graphing in Excel, formulas in Excel, chlorophyll, time-series plots, ocean

Using Grassy Narrows in a Live Classroom with Clicker Questions and Interactive Histogram: Sampling Distributions, Probability, and Hypothesis Testing

Jonathan Andrew Akin

Version: 1.0 Adapted From: Grassy Narrows and Muskrat Falls Dam: Hypothesis Testing and t-Tests v1.0

Students are introduced to concepts of sampling distributions, p-values, and hypothesis testing. Using both simulated and real data for methylmercury level in fish populations, students will determine whether observations fall within government safety guidelines for safe consumption.
Published on 05.2022
1.0K Views
1.2K Downloads
0 Adaptations
statistics, mathematics, biostatistics, ecology, biology, graphing, p-values, t-tests, hypothesis testing, in-class activity, Zoology, mercury biogeochemistry, biostatistics - general, fish population, qbcc, Biogeochemical cycles, Interpret graphs, Concepts in Statistics, Elementary Hypothesis Testing, Methylmercury, dams, Bioaccumulation, traditional diets, mercury, mercury poisoning, native people, indigenous population, Canada, hydroelectric, explaining statistics, using statistics

Exploring Marine Primary Productivity with Descriptive Statistics and Graphing in Excel

Marina McLeod, Jennifer Olson, Wendy Houston

Version: 1.0

In this activity, students use real water chemistry data and descriptive statistics in Excel to examine primary productivity in an urban estuary of the Salish Sea. They will consider how actual data do or do not support expected annual trends.
Published on 09.2021
1.1K Views
1.0K Downloads
1 Adaptations
statistics, ecology, data, Excel, graphing, Biochemistry, Oceanography, marine ecosystems, marine ecology, descriptive statistics, long-term datasets, marine, Microsoft Excel, marine biology, plankton, Outliers, Marine Science, qbcc, Using Excel, phytoplankton, Create graphs, Interpret graphs, Concepts in Statistics, large dataset, explaining statistics, using statistics, Pacific Northwest, Salish Sea, primary productivity, water chemistry, estuary, graphing in Excel, formulas in Excel, chlorophyll, time-series plots, ocean

Using Linear Regression Adaptation: Exploring Vector-borne diseases in an online classroom

Darcy Ernst

Version: 1.0 Adapted From: Using Linear Regression to Explore Environmental Factors Affecting Vector-borne Diseases v1.0

In this adaptation students in online classrooms will use linear regression at home and in synchronous online time to analyze real data on vector-borne diseases and explore how environmental factors affect disease transmission.
Published on 08.2021
712 Views
1.3K Downloads
0 Adaptations
ecology, graphing, microbiology, qbcc, Understanding rates, Create graphs, Interpret graphs, interpret tables, Concepts in Statistics

Grassy Narrows and Muskrat Falls Dam: Hypothesis Testing and t-Tests

Alida Janmaat, Pete Kaslik, Randall LaRue Moser Jr, Kevin David Simpson, Heather Susanne Zimbler-DeLorenzo

Version: 1.0

Students are introduced to concepts of hypothesis testing using elementary hypothesis tests, t-tests, and p-values as they compare a given fish population for methylmercury levels (using real and hypothetical data) against real-world mercury standards.
Published on 07.2021
1.6K Views
1.3K Downloads
3 Adaptations
statistics, mathematics, biostatistics, ecology, biology, graphing, p-values, t-tests, hypothesis testing, in-class activity, Zoology, mercury biogeochemistry, biostatistics - general, fish population, qbcc, Biogeochemical cycles, Interpret graphs, Solving Equations and Inequalities, Concepts in Statistics, Elementary Hypothesis Testing, Methylmercury, dams, Bioaccumulation, traditional diets, mercury, mercury poisoning, native people, indigenous population, Canada, hydroelectric, explaining statistics, using statistics

Using Linear Regression to Explore Environmental Factors Affecting Vector-borne Diseases

Andy Adams, Jessica A Adams, John J. Bray, Tami Imbierowicz, Suzanne Lenhart, Breonna Martin

Version: 1.0

In this activity students will use linear regression to analyze real data on vector-borne diseases and explore how environmental factors such as climate change or population density influence the transmission of these diseases.
Published on 09.2020
2.4K Views
4.2K Downloads
1 Adaptations
ecology, graphing, microbiology, qbcc, Understanding rates, Create graphs, Interpret graphs, interpret tables, Concepts in Statistics

Back to top

6. Evolution

Evolution of Tusklessness in African Elephants

Jennifer Buntz, Jessica Ross, Tony Weisstein, Heather Zimbler-DeLorenzo

Version: 1.0

The exploitation of African elephants in the form of ivory poaching is exacerbated by warfare. The affects of this anthropogenic evolutionary force on the African savanna elephant (Loxodonta africana) in the Gorongoas National Park in Mozambique was investigated (Campbell-Staton, et. al. 2021) after the Mozambican civil war (1997-1992).  This multipart lesson is based on this research.  Here, we explore allele frequencies, phenotypic data, and the use of a chi-squared test to determine if the population is in Hardy-Weinberg Equilibrium.  Because one gene influencing tusklessness is X-linked, we also explore inheritance of the trait, using hemophilia as an example.  The data used in this part of the lesson are simulated data based on reports from Zambia.
Published on 08.2022
1.5K Views
2.8K Downloads
0 Adaptations
Hardy-Weinberg, chi-squared, Evolution, Exponents, Ratios, percents, elephants, Gorongosa National Park, Africa, qbcc, Understanding fractions, Solving Equations and Inequalities, Concepts in Statistics, using statistics, tusk & tuskless, Ivory poaching

Back to top

7. Health Science / Medicine

Choosing healthy data for healthy relationships: how to use 5-point summaries, box and whisker plots, and correlation to understand global health trends.

Andrea Huntoon, John Doudna, Pallavi Bhale, Thalita Abrahão, Alys Hugo, Jennifer Lyon Adler

Version: 1.0

This module utilizes a user-friendly database exploring data selection, box-and-whisker plot, and correlation analysis. It also guides students on how to make a poster of their data and conclusions.
Published on 06.2021
2.3K Views
1.3K Downloads
0 Adaptations
Querying databases, graphing, Ratios, data types, statistical learning, correlation, Box Plots, qbcc, health sciences education research, nutrition & food science, Understanding rates, Create graphs, Interpret graphs, interpret tables, Health Science, Concepts in Statistics, explaining statistics, using statistics

Back to top

8. Microbiology

Uninhibited Growth of Cells

Emily Boyce

Version: 1.0 Adapted From: Graphing bacterial growth rates: semi-log graphs v linear graphs v1.0

In this activity, students will explore the concept of binary fission, generation time, and bacterial growth curves, with an emphasis on the log phase. Students will use semi-log graphs and linear graphs to plot bacterial cell growth.
Published on 03.2022
687 Views
839 Downloads
0 Adaptations
graphing, exponential growth, Microbiology Education, microbiology, bacteria, growth rate, Undergraduate STEM education, Community College Education, qbcc, manipulate equations, Cellular and Molecular Biology, Create graphs, Interpret graphs, binary fission, semi-log graph, linear graph, growth curve, creating graphs

Using Linear Regression Adaptation: Exploring Vector-borne diseases in an online classroom

Darcy Ernst

Version: 1.0 Adapted From: Using Linear Regression to Explore Environmental Factors Affecting Vector-borne Diseases v1.0

In this adaptation students in online classrooms will use linear regression at home and in synchronous online time to analyze real data on vector-borne diseases and explore how environmental factors affect disease transmission.
Published on 08.2021
712 Views
1.3K Downloads
0 Adaptations
ecology, graphing, microbiology, qbcc, Understanding rates, Create graphs, Interpret graphs, interpret tables, Concepts in Statistics

The Perfect Brew: An Activity Demonstrating Cell Counting and Hemocytometer Use

Bridgette Kirkpatrick

Version: 1.0 Adapted From: The Perfect Brew: An Activity Demonstrating Cell Counting and Hemocytometer Use v1.0

In this activity, students will explore the use of a hemocytometer for counting cells, demonstrate the relationship between the grid seen in the microscope with volume of liquid in suspension and count cells to determine concentration.
Published on 06.2021
1.0K Views
432 Downloads
0 Adaptations
Ratios, microbiology, qbcc, Cellular and Molecular Biology, Understanding fractions, converting units, changing scales, measurements

Graphing bacterial growth rates: semi-log graphs v linear graphs

Adam Marschall Jaros, Adronisha Frazier, Beth Alford, Brandy Williams

Version: 1.0

In this activity, students will explore the concept of binary fission, generation time, and bacterial growth curves, with an emphasis on the log phase. Students will use semi-log graphs and linear graphs to plot bacterial cell growth.
Published on 02.2021
2.5K Views
1.7K Downloads
1 Adaptations
graphing, exponential growth, Microbiology Education, microbiology, bacteria, growth rate, Undergraduate STEM education, Community College Education, qbcc, manipulate equations, Cellular and Molecular Biology, Create graphs, Interpret graphs, binary fission, semi-log graph, linear graph, growth curve, creating graphs

The Perfect Brew: An Activity Demonstrating Cell Counting and Hemocytometer Use

Angela Consani, Duane Doyle, David L Jones, Bara Sarraj, Heather Seitz

Version: 1.0

In this activity, students will explore the use of a hemocytometer for counting cells, demonstrate the relationship between the grid seen in the microscope with volume of liquid in suspension and count cells to determine concentration.
Published on 09.2020
1.7K Views
1.1K Downloads
1 Adaptations
Ratios, microbiology, qbcc, Cellular and Molecular Biology, Understanding fractions, converting units, changing scales, measurements

Using Linear Regression to Explore Environmental Factors Affecting Vector-borne Diseases

Andy Adams, Jessica A Adams, John J. Bray, Tami Imbierowicz, Suzanne Lenhart, Breonna Martin

Version: 1.0

In this activity students will use linear regression to analyze real data on vector-borne diseases and explore how environmental factors such as climate change or population density influence the transmission of these diseases.
Published on 09.2020
2.4K Views
4.2K Downloads
1 Adaptations
ecology, graphing, microbiology, qbcc, Understanding rates, Create graphs, Interpret graphs, interpret tables, Concepts in Statistics

Back to top

9. Neuroscience
No resources found.

Back to top

10. Nutrition / Food Science
No resources found.

Back to top

11. Organismal 
No resources found.

Back to top

12. Physiology

Why does Blood Flow Change? Investigating the Math of Blood Flow Dynamics

Amy Troyer, Brandi Morgante Handzlik, Mary Phillips

Version: 1.0

This collection of activities explores the relationship between blood flow, pressure, and the factors of resistance through graphs and modeling direct and inverse variation.
Published on 06.2020
1.3K Views
1.3K Downloads
0 Adaptations
quant bio, graphing, Ratios, math, assessment, college algebra, undergraduate education, physiology, Anatomy, human biology, variation, Cardiovascular physiology, Anatomy & Physiology, lab activity, OpenStax, qbcc, manipulate equations, Understanding fractions, Choosing models, Understanding rates, Estimating answers, Use elementary functions, Create graphs, Interpret graphs, Rates and Proportions, Solving Equations and Inequalities

Back to top

13. Systems
No resources found.

Back to top

14. Zoology

Modified Grassy Narrows and Muskrat Falls Dam: Hypothesis Testing and t-Tests

Sharon Maureen Homer-Drummond

Version: 3.0

Methylmercury contamination within fish populations is an important toxin that affect human, animal, and environmental health, serving as a carcinogen (cancer-causing agent) and endocrine-disruptor (compounds that in some way alter the signaling of the hormone system. The impacts of exceeding safe dietary methylmercury levels were tragically made clear in Ontario, Canada, where a First Nations community in Grassy Narrows are living with the consequences of methylmercury poisoning in the fish supply. The fish were contaminated due to the dumping of mercury in the traditional waterways of the First Nation community. In 2016, there were highly publicized protests in Muskrat Falls, Labrador, Canada, where the Inuit people raised direct concerns about the potential for a proposed Nalcor Energy hydroelectric dam, to increase mercury levels in fish in those waters, which are an integral part of their traditional diet. Despite significant protests, the project was completed in 2019 and 41 km were flooded. This module uses these real-world examples as a jumping-off point for exercises that will guide case-study driven discussion on mathematical, biological and ethical concerns.
Published on 02.2023
411 Views
353 Downloads
0 Adaptations
statistics, mathematics, biostatistics, ecology, biology, graphing, p-values, t-tests, hypothesis testing, in-class activity, Zoology, mercury biogeochemistry, biostatistics - general, fish population, qbcc, Endocrine Disruptors, Biogeochemical cycles, Interpret graphs, Solving Equations and Inequalities, Concepts in Statistics, Elementary Hypothesis Testing, Methylmercury, dams, Bioaccumulation, traditional diets, mercury, mercury poisoning, native people, indigenous population, Canada, hydroelectric, explaining statistics, using statistics, biomagnification

Grassy Narrows and Muskrat Falls Dam: The Central Limit Theorem and a t-test

Paul Miller

Version: 2.0 Adapted From: Grassy Narrows and Muskrat Falls Dam: Hypothesis Testing and t-Tests v1.0

Students are introduced to concepts of sampling distributions and hypothesis testing using a simulation applet, elementary hypothesis tests, t-tests, and p-values as they compare a given fish population for methylmercury levels (using real and hypothetical data) against real-world mercury standards.
Published on 02.2023
398 Views
411 Downloads
0 Adaptations
statistics, mathematics, biostatistics, ecology, biology, graphing, p-values, t-tests, hypothesis testing, in-class activity, Zoology, mercury biogeochemistry, biostatistics - general, fish population, qbcc, Biogeochemical cycles, Interpret graphs, Solving Equations and Inequalities, Concepts in Statistics, Elementary Hypothesis Testing, Methylmercury, dams, Bioaccumulation, traditional diets, mercury, mercury poisoning, native people, indigenous population, Canada, hydroelectric, explaining statistics, using statistics

Using Grassy Narrows in a Live Classroom with Clicker Questions and Interactive Histogram: Sampling Distributions, Probability, and Hypothesis Testing

Jonathan Andrew Akin

Version: 1.0 Adapted From: Grassy Narrows and Muskrat Falls Dam: Hypothesis Testing and t-Tests v1.0

Students are introduced to concepts of sampling distributions, p-values, and hypothesis testing. Using both simulated and real data for methylmercury level in fish populations, students will determine whether observations fall within government safety guidelines for safe consumption.
Published on 05.2022
1.0K Views
1.2K Downloads
0 Adaptations
statistics, mathematics, biostatistics, ecology, biology, graphing, p-values, t-tests, hypothesis testing, in-class activity, Zoology, mercury biogeochemistry, biostatistics - general, fish population, qbcc, Biogeochemical cycles, Interpret graphs, Concepts in Statistics, Elementary Hypothesis Testing, Methylmercury, dams, Bioaccumulation, traditional diets, mercury, mercury poisoning, native people, indigenous population, Canada, hydroelectric, explaining statistics, using statistics

Grassy Narrows and Muskrat Falls Dam: Hypothesis Testing and t-Tests

Alida Janmaat, Pete Kaslik, Randall LaRue Moser Jr, Kevin David Simpson, Heather Susanne Zimbler-DeLorenzo

Version: 1.0

Students are introduced to concepts of hypothesis testing using elementary hypothesis tests, t-tests, and p-values as they compare a given fish population for methylmercury levels (using real and hypothetical data) against real-world mercury standards.
Published on 07.2021
1.6K Views
1.3K Downloads
3 Adaptations
statistics, mathematics, biostatistics, ecology, biology, graphing, p-values, t-tests, hypothesis testing, in-class activity, Zoology, mercury biogeochemistry, biostatistics - general, fish population, qbcc, Biogeochemical cycles, Interpret graphs, Solving Equations and Inequalities, Concepts in Statistics, Elementary Hypothesis Testing, Methylmercury, dams, Bioaccumulation, traditional diets, mercury, mercury poisoning, native people, indigenous population, Canada, hydroelectric, explaining statistics, using statistics

Back to top