Text Search:
Applied Filters
    3-001-SpringMassDataAnalysis-ModelingScenario
    We offer data on position of a mass at end of spring over time where the spring mass configuration has damping due to taped flat index cards at the bottom of the mass. Modeling of a spring mass...
    344

    views

    387

    downloads

    0

    comments

    0

    adaptations

    3-002-ModelsMotivatingSecondOrder-ModelingScenario
    Ordinary differential equations involve second derivatives and second derivatives appear in many contexts, chief among them are the study of forces and resulting motion. This is principally because...
    551

    views

    730

    downloads

    0

    comments

    0

    adaptations

    3-006-Buoyancy-ModelingScenario
    We offer data from a physical experiment in which the depth of a container in water is measured and ask students to build a model of buoyancy based on Newton's Second Law of Motion and a Free Body...
    304

    views

    383

    downloads

    0

    comments

    0

    adaptations

    3-009-BallDropInWater-ModelingScenario
    We conduct an analysis of a falling ball in liquid to determine its terminal velocity and to ascertain just what radius ball for a given mass density is necessary to attain a designated terminal...
    261

    views

    158

    downloads

    0

    comments

    0

    adaptations

    3-013-WhiffleBallFall-ModelingScenario
    We are given data on the time and position of a whiffle ball as it falls to the ground. We attempt to model the falling ball and we confront the different resistance terms and models.
    266

    views

    257

    downloads

    0

    comments

    0

    adaptations

    3-015-StyrofoamBallFall-ModelingScenario
    We are given data on a falling Styrofoam ball and we seek to model this motion.
    242

    views

    141

    downloads

    0

    comments

    0

    adaptations

    3-016-FallingCoffeeFilters-ModelingScenario
    We are given data on the time and position of a stack of coffee filters as it falls to the ground. We attempt to model the falling mass and we confront the different resistance terms and models.
    960

    views

    1513

    downloads

    0

    comments

    0

    adaptations

    3-017-StackedCoffeeFiltersFalling-ModelingScenario
    Data on free falling 2, 4, 6, and 8 stacked coffee filters is offered. Students form a model using a resistance term proportional to velocity, velocity squared, or velocity to some general power....
    312

    views

    254

    downloads

    0

    comments

    0

    adaptations

    3-019-ShuttleCockFalling-ModelingScenario
    We are given data on the time and position of a shuttlecock as it falls to the ground from a set height. We attempt to model the falling object and we confront the different resistance terms and...
    348

    views

    519

    downloads

    0

    comments

    0

    adaptations

    3-026-SpringInverseProblem-ModelingScenario
    We are given data on the position of a mass in an oscillating spring mass system and we seek to discover approaches to estimating an unknown parameter.
    248

    views

    151

    downloads

    0

    comments

    0

    adaptations

    3-027-BobbingDropping-ModelingScenario
    We present two exercises in which we ask students to model (1) falling object experiencing terminal velocity and (2) bobbing block of wood in liquid. We model the motion using Newton's Second Law...
    227

    views

    136

    downloads

    0

    comments

    0

    adaptations

    3-029-FerrisWheelCatch-ModelingScenario
    We offer the opportunity to model the throw of an object to a person on a moving Ferris wheel.
    275

    views

    288

    downloads

    0

    comments

    0

    adaptations

    3-031-SpringCost-ModelingScenario
    We assume students are familiar with overdamping and underdamping of a spring-mass-dashpot system. Students will apply this knowledge to model the interplay between spring constant, tolerance, and...
    205

    views

    155

    downloads

    0

    comments

    0

    adaptations

    3-035-StadiumDesign-ModelingScenario
    For a given baseball playing field outline how high must the outfield fence be at each point in order to make a homerun equally likely in all fair directions?
    260

    views

    278

    downloads

    0

    comments

    0

    adaptations

    3-040-FirstPassageTime-ModelingScenario
    We apply the notions of dampedness to second order, linear, constant coefficient, homogeneous differential equations used to model a spring mass dashpot system and introduce the notion of first...
    215

    views

    109

    downloads

    0

    comments

    0

    adaptations

    3-041-UpDown-ModelingScenario
    Shoot a projectile straight up in the air. Determine maximum height the projectile will go. Consider time T(a) (0 < a < 1) it takes between when the projectile passes distance a.H going up and...
    214

    views

    110

    downloads

    0

    comments

    0

    adaptations

    3-042-CatapultLaunch-ModelingScenario
    We maximize the range of a projectile by backing up an incline in the opposite direction of the range to give some initial lift. Find the position on the hill from which to launch the projectile to...
    225

    views

    161

    downloads

    0

    comments

    0

    adaptations

    3-054-Relay-ModelingScenario
    We use a differential equations of one dimensional projectile motion and an integration of velocity for total distance to model the relay between an outfielder and an infielder in throwing the ball...
    321

    views

    191

    downloads

    0

    comments

    0

    adaptations

    3-075-RLCCircuits-ModelingScenario
    We introduce the basics of RLC circuits, defining the terms of inductance, resistance, and capacitance in a circuit in which an induced voltage created a current running through these devices.
    254

    views

    167

    downloads

    0

    comments

    0

    adaptations

    3-101-SpringMassFirstTry-NoResistance-ModelingScenario
    Students build a model based on their perceptions of what the solution should look like for a simple spring mass system with no damping.
    326

    views

    364

    downloads

    0

    comments

    0

    adaptations