Text Search:
Applied Filters
    3-001-SpringMassDataAnalysis-ModelingScenario
    We offer data on position of a mass at end of spring over time where the spring mass configuration has damping due to taped flat index cards at the bottom of the mass. Modeling of a spring mass...
    325

    views

    325

    downloads

    0

    comments

    0

    adaptations

    3-002-ModelsMotivatingSecondOrder-ModelingScenario
    Ordinary differential equations involve second derivatives and second derivatives appear in many contexts, chief among them are the study of forces and resulting motion. This is principally because...
    532

    views

    692

    downloads

    0

    comments

    0

    adaptations

    3-006-Buoyancy-ModelingScenario
    We offer data from a physical experiment in which the depth of a container in water is measured and ask students to build a model of buoyancy based on Newton's Second Law of Motion and a Free Body...
    296

    views

    249

    downloads

    0

    comments

    0

    adaptations

    3-009-BallDropInWater-ModelingScenario
    We conduct an analysis of a falling ball in liquid to determine its terminal velocity and to ascertain just what radius ball for a given mass density is necessary to attain a designated terminal...
    248

    views

    129

    downloads

    0

    comments

    0

    adaptations

    3-013-WhiffleBallFall-ModelingScenario
    We are given data on the time and position of a whiffle ball as it falls to the ground. We attempt to model the falling ball and we confront the different resistance terms and models.
    261

    views

    208

    downloads

    0

    comments

    0

    adaptations

    3-015-StyrofoamBallFall-ModelingScenario
    We are given data on a falling Styrofoam ball and we seek to model this motion.
    230

    views

    120

    downloads

    0

    comments

    0

    adaptations

    3-016-FallingCoffeeFilters-ModelingScenario
    We are given data on the time and position of a stack of coffee filters as it falls to the ground. We attempt to model the falling mass and we confront the different resistance terms and models.
    952

    views

    1433

    downloads

    0

    comments

    0

    adaptations

    3-017-StackedCoffeeFiltersFalling-ModelingScenario
    Data on free falling 2, 4, 6, and 8 stacked coffee filters is offered. Students form a model using a resistance term proportional to velocity, velocity squared, or velocity to some general power....
    296

    views

    194

    downloads

    0

    comments

    0

    adaptations

    3-019-ShuttleCockFalling-ModelingScenario
    We are given data on the time and position of a shuttlecock as it falls to the ground from a set height. We attempt to model the falling object and we confront the different resistance terms and...
    335

    views

    462

    downloads

    0

    comments

    0

    adaptations

    3-026-SpringInverseProblem-ModelingScenario
    We are given data on the position of a mass in an oscillating spring mass system and we seek to discover approaches to estimating an unknown parameter.
    238

    views

    116

    downloads

    0

    comments

    0

    adaptations

    3-027-BobbingDropping-ModelingScenario
    We present two exercises in which we ask students to model (1) falling object experiencing terminal velocity and (2) bobbing block of wood in liquid. We model the motion using Newton's Second Law...
    217

    views

    116

    downloads

    0

    comments

    0

    adaptations

    3-029-FerrisWheelCatch-ModelingScenario
    We offer the opportunity to model the throw of an object to a person on a moving Ferris wheel.
    263

    views

    241

    downloads

    0

    comments

    0

    adaptations

    3-031-SpringCost-ModelingScenario
    We assume students are familiar with overdamping and underdamping of a spring-mass-dashpot system. Students will apply this knowledge to model the interplay between spring constant, tolerance, and...
    193

    views

    118

    downloads

    0

    comments

    0

    adaptations

    3-035-StadiumDesign-ModelingScenario
    For a given baseball playing field outline how high must the outfield fence be at each point in order to make a homerun equally likely in all fair directions?
    253

    views

    244

    downloads

    0

    comments

    0

    adaptations

    3-040-FirstPassageTime-ModelingScenario
    We apply the notions of dampedness to second order, linear, constant coefficient, homogeneous differential equations used to model a spring mass dashpot system and introduce the notion of first...
    206

    views

    96

    downloads

    0

    comments

    0

    adaptations

    3-041-UpDown-ModelingScenario
    Shoot a projectile straight up in the air. Determine maximum height the projectile will go. Consider time T(a) (0 < a < 1) it takes between when the projectile passes distance a.H going up and...
    203

    views

    104

    downloads

    0

    comments

    0

    adaptations

    3-042-CatapultLaunch-ModelingScenario
    We maximize the range of a projectile by backing up an incline in the opposite direction of the range to give some initial lift. Find the position on the hill from which to launch the projectile to...
    207

    views

    113

    downloads

    0

    comments

    0

    adaptations

    3-054-Relay-ModelingScenario
    We use a differential equations of one dimensional projectile motion and an integration of velocity for total distance to model the relay between an outfielder and an infielder in throwing the ball...
    309

    views

    165

    downloads

    0

    comments

    0

    adaptations

    3-075-RLCCircuits-ModelingScenario
    We introduce the basics of RLC circuits, defining the terms of inductance, resistance, and capacitance in a circuit in which an induced voltage created a current running through these devices.
    242

    views

    140

    downloads

    0

    comments

    0

    adaptations

    3-101-SpringMassFirstTry-NoResistance-ModelingScenario
    Students build a model based on their perceptions of what the solution should look like for a simple spring mass system with no damping.
    306

    views

    312

    downloads

    0

    comments

    0

    adaptations