Text Search:
Applied Filters
    3-010-EnergyInSpringMassSystem-ModlingScenario
    As a way to synthesize the effects of damping and forcing terms, this activity is meant to encourage students to explore how different forcing terms will change the total energy in a mass-spring...
    212

    views

    157

    downloads

    0

    comments

    0

    adaptations

    3-011-EulerBallThrowing-ModelingScenario
    If a tennis ball is thrown through the air it will hit the ground due to gravity. Using Euler's method, write a short script (Python, Matlab, R, etc.) to find the trajectory of the ball which will...
    247

    views

    181

    downloads

    0

    comments

    0

    adaptations

    3-015-StyrofoamBallFall-ModelingScenario
    We are given data on a falling Styrofoam ball and we seek to model this motion.
    202

    views

    114

    downloads

    0

    comments

    0

    adaptations

    3-016-FallingCoffeeFilters-ModelingScenario
    We are given data on the time and position of a stack of coffee filters as it falls to the ground. We attempt to model the falling mass and we confront the different resistance terms and models.
    917

    views

    1428

    downloads

    0

    comments

    0

    adaptations

    3-017-StackedCoffeeFiltersFalling-ModelingScenario
    Data on free falling 2, 4, 6, and 8 stacked coffee filters is offered. Students form a model using a resistance term proportional to velocity, velocity squared, or velocity to some general power....
    268

    views

    194

    downloads

    0

    comments

    0

    adaptations

    3-019-ShuttleCockFalling-ModelingScenario
    We are given data on the time and position of a shuttlecock as it falls to the ground from a set height. We attempt to model the falling object and we confront the different resistance terms and...
    299

    views

    442

    downloads

    0

    comments

    0

    adaptations

    3-026-SpringInverseProblem-ModelingScenario
    We are given data on the position of a mass in an oscillating spring mass system and we seek to discover approaches to estimating an unknown parameter.
    207

    views

    113

    downloads

    0

    comments

    0

    adaptations

    3-027-BobbingDropping-ModelingScenario
    We present two exercises in which we ask students to model (1) falling object experiencing terminal velocity and (2) bobbing block of wood in liquid. We model the motion using Newton's Second Law...
    205

    views

    111

    downloads

    0

    comments

    0

    adaptations

    3-029-FerrisWheelCatch-ModelingScenario
    We offer the opportunity to model the throw of an object to a person on a moving Ferris wheel.
    234

    views

    231

    downloads

    0

    comments

    0

    adaptations

    3-031-SpringCost-ModelingScenario
    We assume students are familiar with overdamping and underdamping of a spring-mass-dashpot system. Students will apply this knowledge to model the interplay between spring constant, tolerance, and...
    185

    views

    118

    downloads

    0

    comments

    0

    adaptations

    3-035-StadiumDesign-ModelingScenario
    For a given baseball playing field outline how high must the outfield fence be at each point in order to make a homerun equally likely in all fair directions?
    220

    views

    235

    downloads

    0

    comments

    0

    adaptations

    3-040-FirstPassageTime-ModelingScenario
    We apply the notions of dampedness to second order, linear, constant coefficient, homogeneous differential equations used to model a spring mass dashpot system and introduce the notion of first...
    173

    views

    96

    downloads

    0

    comments

    0

    adaptations

    Climate Change Module (Project EDDIE) for Introductory Statistics
    Students practice and deepen their understanding of bivariate numerical data analysis (correlation, linear regression, etc.) through working with data related to climate change. Adapted from a...

    Keywords: statistics

    795

    views

    497

    downloads

    0

    comments

    0

    adaptations

    3-041-UpDown-ModelingScenario
    Shoot a projectile straight up in the air. Determine maximum height the projectile will go. Consider time T(a) (0 < a < 1) it takes between when the projectile passes distance a.H going up and...
    174

    views

    96

    downloads

    0

    comments

    0

    adaptations

    3-042-CatapultLaunch-ModelingScenario
    We maximize the range of a projectile by backing up an incline in the opposite direction of the range to give some initial lift. Find the position on the hill from which to launch the projectile to...
    196

    views

    113

    downloads

    0

    comments

    0

    adaptations

    3-050-CometOrbitalMechanics-ModelingScenario
    The broad goal of this activity is to use a basic numerical method to approximate the solution of an initial value problem. In this particular case, we will use Euler's method to help model the...
    184

    views

    304

    downloads

    0

    comments

    0

    adaptations

    3-054-Relay-ModelingScenario
    We use a differential equations of one dimensional projectile motion and an integration of velocity for total distance to model the relay between an outfielder and an infielder in throwing the ball...
    277

    views

    154

    downloads

    0

    comments

    0

    adaptations

    3-055-FloatingBox-ModelingScenario
    In this scenario, we lead students through the process of building a mathematical model for a floating rectangular box that is bobbing up and down.
    190

    views

    132

    downloads

    0

    comments

    0

    adaptations

    3-060-DataToDifferentialEquation-ModelingScenario
    Students use knowledge of second-order linear differential equations in conjunction with physical intuition of spring-mass systems to estimate the damping coefficient and spring constant from data.
    171

    views

    293

    downloads

    0

    comments

    0

    adaptations

    3-064-GearTrain-ModelingScenario
    Students model an input-output mechanical system of gears with a second order, non-homogeneous, ordinary differential equation with constant coefficients. The model incorporates friction and...
    165

    views

    178

    downloads

    0

    comments

    0

    adaptations