"Biotechnology" 11 posts Sort by created date Sort by defined ordering View as a grid View as a list

Gelin’: Gel Electrophoresis Simulation

Students will understand how DNA is separated into a fingerprint by using a chromatography activity to simulate gel electrophoresis.

0 comments 1 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Intro videos and terminology for GMOs, Transcription, Translation

Compiled resources around GMOs and protein production including vocabulary, animations, videos, and games

0 comments 3 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Bacteria Transformation

TeachEngineering resource in which students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria.

0 comments 1 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Conservation and ethics of using synthetic genetics

This contains teaching material - powerpoints and handouts that can be adapted for lectures and/or discussion groups.

0 comments 1 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Bioinformatics: Food Detective – a Practical Guide

This Practical Guide in the Bringing Bioinformatics into the Classroom series introduces the idea of computers as tools to help understand aspects of biology.

0 comments 3 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Does it pose a threat? Investigating the impact of Bt corn on monarch butterflies

primary literature discussion of Bt corn effects

0 comments 3 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Introductory Biology (identifying new promoters)

Students often memorize the definition of a transcriptional promoter but fail to fully understand the critical role promoters play in gene expression. This laboratory lesson allows students to conduct original research by identifying and characterizing promoters found in prokaryotes. Students start with primary literature, design and clone a short promoter, and test how well their promoter works. This laboratory lesson is an easy way for faculty with limited time and budgets to give their students access to real research in the context of traditional teaching labs that meet once a week for under three hours. The pClone Red Introductory Biology lesson uses synthetic biology methods and makes cloning so simple that we have 100% success rates with first year students. Students use a database to archive their promoter sequences and the performance of the promoter under standard conditions. The database permits synthetic biology researchers around the world to find a promoter that suits their needs and compare relative levels of transcription. The core methodology in this lesson is identical to the core methodology in the companion Genetics Lesson by Eckdahl and Campbell. The methods are reproduced in both lessons for the benefit of readers. The two CourseSource lessons provide the detailed information needed to reproduce the pedagogical research results published in CBE - Life Sciences Education by Campbell et al., 2014.

0 comments 3 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Using Synthetic Biology and pClone Red for Authentic Research on Promoter Function: Genetics (analyzing mutant promoters)

Students often memorize the definition of a transcriptional promoter but fail to fully understand the critical role promoters play in gene expression.  This laboratory lesson allows students to conduct original research by characterizing functional regions within known prokaryotic promoters.  Students begin the lesson by learning the properties of transcriptional promoter DNA sequences.  They design mutations for a constitutive promoter and discuss their designs as a class to choose which mutations to clone and characterize.  This lesson provides an easy way for faculty with limited time and budgets to give their students access to real research in the context of traditional teaching labs that meet once a week for under three hours.  The pClone Red Genetics lesson uses synthetic biology methods and makes cloning so simple that we have 100% success rates with sophomores taking Genetics.  Students archive promoter sequences and their performances under standard conditions.  The database permits synthetic biology researchers around the world to find a promoter that suits their needs and compare relative levels of transcription.  The core methodology in this lesson is identical to the core methodology in the companion Introductory Biology Lesson by Campbell and Eckdahl. The methods are reproduced in both lessons for the benefit of readers.  The two CourseSource lessons provide the detailed information needed to reproduce the pedagogical research results published in CBE – Life Sciences Education by Campbell et al., 2014.

0 comments 1 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Learning to Pipet Correctly by Pipetting Incorrectly?

Beginning undergraduate students in biology need basic laboratory, data analysis, and science process skills to pursue more complex questions in course-based undergraduate research experiences (CUREs). To this end, we designed an introductory lesson that helps students learn to use common laboratory equipment such as analytical balances and micropipettes, analyze and present data in Google and Microsoft spreadsheet software, and perform simple descriptive and inferential statistics for hypothesis testing. In this lesson, students first learn to use micropipettes by pipetting specific volumes of water correctly and incorrectly. After determining the masses of the water samples pipetted, students enter the data into a shared Google spreadsheet and then use statistics to test a null hypothesis; ultimately, they determine if there is a statistically significant difference between the mass of water pipetted correctly versus incorrectly. Together, these activities introduce students to important data analysis and science process skills while also orienting them to basic laboratory equipment.

0 comments 6 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Teaching the Central Dogma Using a Case Study of Genetic Variation in Cystic Fibrosis

The central dogma of biology is a foundational concept that is traditionally included in genetics curricula at all academic levels. Despite its ubiquitous presence throughout genetics education, students persistently struggle with both the fundamental and advanced topics of the central dogma. In particular, students conflate the role of genomic variations in DNA replication, transcription, and translation. As research and healthcare increasingly utilizes genomic medicine to link genetic variants to clinical phenotypes, it is critically important for biology and health science students to understand the role of genetic variation in molecular genetics. This lesson focuses on the role of missense mutations in the central dogma using a case study of cystic fibrosis. The case study is paired with a creative activity in which students draw the molecular parts of the central dogma. This helps students to connect the abstract concepts of the central dogma to a real-world clinical example. The effectiveness of this lesson was evaluated for two semesters of a Human Genetics course using end-of-unit exam questions. The active-learning lesson is an engaging activity that reinforces the role of genetic variation in the central dogma and the effects on clinical phenotypes. This lesson is highly customizable and adaptable to courses of various sizes, levels, course lengths, and teaching modalities.

Primary image: Molecular View of the Central Dogma. This drawing was produced by a student at Bloomsburg University’s Human Genetics course for Part 1 of this lesson.

0 comments 5 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology

Workshop Report: Summer 2020 Virtual CRISPR in the Classroom

list of CRISPR teaching resources

0 comments 1 reposts

Profile picture of Rob Levenson

Rob Levenson onto Biotechnology