"A&P" 2 posts Sort by created date Sort by defined ordering View as a grid View as a list

Modeling the Research Process: Authentic human physiology research in a large non-majors course

Laboratory experiences in large-enrollment introductory science courses often utilize “cookie-cutter style” laboratory experiences due to the relative simplicity of setting up the lab stations, as well as a need to teach students particular course content. These experiences rarely offer insights into the way science is done in the research setting, resulting in a lack of understanding of the scientific process. In addition, students enrolled in non-majors introductory science courses often fail to see the relevance between what they are doing in the lab and what they are learning in the lecture portion of their course. To address this gap, we developed a laboratory module for a non-majors Human Biology course that provides students with a hands-on, authentic research experience using the iWorx software and hardware for human physiology. Weekly modules were designed to guide students through the major steps of the research process, including reading current scientific literature, developing a testable hypothesis, designing and performing a physiology experiment, analyzing data and presenting their findings to their peers. The described course framework encouraged students to participate in the scientific process, providing them with the opportunity to engage in an authentic research experience. The model described here could be adapted for use with introductory or advanced students, and could be modified to fit any research model available to the instructor. Utilizing the multi-week format described is recommended for students to gain the full benefit from the research-design-revise process.

0 comments 3 reposts

Profile picture of Benjamin Wilhelm

Benjamin Wilhelm onto A&P

What do Bone and Silly Putty® have in Common?: A Lesson on Bone Viscoelasticity

Without the use of real-life examples and models, actively instructing and engaging students in complex physiology topics related to bone biomechanics can be challenging. In our large-enrollment Human Physiology & Anatomy courses at the University of Connecticut, the skeletal system is the first organ system that we cover in depth, rendering even more important our establishment of (and emphasis on) how fascinating--and directly applicable to everyday life--the anatomical features and physiological properties of organs can be. Because our lecture courses are supplemented with 2 hours per week of anatomy-intensive laboratory investigations, we tend to focus heavily on physiology concepts during lecture. For the skeletal system, we consider stress-strain curves in the context of bone biomechanics, including the materials-science concepts of elasticity, plasticity, and viscoelasticity, and the more generalizable concepts of hysteresis and anisotropy. Hoping to provide a fun, entertaining, and real-world perspective on these topics, we used Silly Putty® as an inexpensive, familiar, and readily-available model of some of these bone properties. This lesson allows students to get engaged in, and familiarized with, biomechanical concepts through demonstration of this well-known play material's properties, as a concrete reference point. Coupling the lesson with active questioning and think-pair-share activities allows students to develop skills in data interpretation and to apply previously-acquired knowledge bases to a novel situation. In this lesson, we provide instructors with a template for re-creating this demonstration, which can be accompanied by active-learning strategies and resources that promote development of data-interpretation and problem-solving skills in students.

This article has an accompanying Science Behind the Lesson article: "A Short Bone Biomechanics Primer: Background for a Lesson on Bone Viscoelasticity."

0 comments 1 reposts

Profile picture of Benjamin Wilhelm

Benjamin Wilhelm onto A&P