"Micro and Immuno" 3 posts Sort by created date Sort by defined ordering View as a grid View as a list

A 360˚ View of COVID-19

In March 2020, institutions underwent a massive transition to distance learning as a result of the COVID-19 pandemic. With so little time to devise new materials to maximize learning in the new virtual environment, instructors devised a variety of innovative strategies for completing the Spring 2020 semester. While highly disruptive, the pandemic also brought mainstream attention to a wide array of scientific concepts and provided an opportunity to teach students about science in real-time. Teaching topics related to COVID-19 can be approached from many different disciplines such as virology, immunology, biochemistry, genetics, public health, pharmacology, systems biology, and synthetic biology. By bringing together lessons devised by each of the authors on their own, we offer a series of curriculum modules that can be used either collectively or in parts to provide students with a multidisciplinary look at the virus and to answer their own curiosity about the disease that will define their generation.

Primary image: 360-degree view of COVID-19. The primary image depicts a SARS-CoV-2 virion surrounded by the fields of study that are featured in our pedagogical activities.

0 comments 6 reposts

Profile picture of Heather Evans

Heather Evans onto Micro and Immuno

Follow the Sulfur: Using Yeast Mutants to Study a Metabolic Pathway

Students are frequently overwhelmed by the complexity of metabolic pathways and they think they have "learned" the pathway when they have memorized the individual reactions.  This laboratory lesson helps students to understand the significance of individual reactions in the pathways leading to methionine synthesis in the budding yeast, Saccharomyces cerevisiae.  Students appreciate that methionine is one of only two sulfur-containing amino acids, and students do not find it difficult to follow the "yellow" sulfur atom in the pathway. In the lesson, students use three different yeast met strains, each of which lacks a single gene involved in methionine synthesis.  Working in groups of three, students identify the missing MET gene in each of the three deletion strains by analyzing the abilities of the deletion strains to grow on several defined media in which methionine has been replaced with alternative sulfur sources. Students also determine the position of mutant genes in the pathway relative to sulfite reductase, using indicator media that reacts with sulfide, the product of the reaction catalyzed by sulfite reductase. For the analysis, students prepare serial dilutions of yeast cultures and spot the dilution series on agar plates. This lesson is part of a semester-long research investigation into the evolutionary conservation of the genes involved in methionine synthesis. The lesson can also be used as a stand-alone exercise that teaches students about biochemical pathways, while reinforcing basic microbiological techniques.

0 comments 2 reposts

Profile picture of Heather Evans

Heather Evans onto Micro and Immuno

To Vaccinate or Not to Vaccinate

To vaccinate or not to vaccinate, that is the question. Much of the recent trend in society against vaccination is that the general population does not understand 1) how vaccines work and 2) how one's vaccination status can influence others. Further compounding this is rather low acceptance of the influenza vaccine, a vaccine which is sometimes not even effective against the strains predominantly in circulation. Through engaging in a conversation about the role of vaccines in immunity not only of oneself but also about surrounding persons, we can increase vaccine acceptance. Herein is a physical assay which illustrates the concept of herd immunity with differing levels of vaccinations within a population. Students will learn that low vaccination rates do little to nothing to stop disease spread and that a large portion of the population (80%) is necessary to achieve near-eradication. This lesson is able to be taught at multiple levels using supplies that can mostly be obtained at the grocery store. In addition to illustrating vaccination, this study approximates a direct enzyme-linked immunosorbent assay (ELISA), enabling students to better understand that technique and how it is used to diagnose disease as well as the interrelation between antigens and antibodies.

0 comments 5 reposts

Profile picture of Heather Evans

Heather Evans onto Micro and Immuno