Movement: Nature's Flying Machines
Author(s): Blake Cahill1, Anna Monfils1, Debra Linton1
Central Michigan University
2707 total view(s), 1106 download(s)
- BLUE Natures Flying Machines Module.docx(DOCX | 5 MB)
- BLUE Natures Flying Machines Pre-Lab.docx(DOCX | 2 MB)
- Watanabe Data.xlsx(XLSX | 44 KB)
- License terms
Description
Movement is a key function required for the survival and reproduction of organisms. Microorganisms, such as bacteria and unicellular protists, achieve movement via cellular structures such as cilia and flagellae. Plants and fungi are incapable of individual locomotion but can disperse their offspring via seeds and spores and can grow towards or away from environmental stimuli. Animals have evolved a multitude of methods for movement in terrestrial, aquatic, and aerial environments. One of the most successful types of animal locomotion is flight. Flight has evolved at least four separate times, in the insects, pterosaurs, birds, and bats. Flying animals have a diversity of body forms and aerial abilities. They can teach us a lot about form and function. In fact, scientists study animal flight to develop flying robots, airplanes, and rocket ships. In today’s lab, you will investigate the forces involved in the form and function of flight in birds and insects.
Students completing this module will be able to:
- Explain the forces acting on flight.
- Describe how lift is created by wings.
- Compare how antagonistic muscles (flexors, extensors) power flight in animals with endoskeletons and exoskeletons.
- Discuss how wing morphology (form) relates to flight ability (function).
- Evaluate the impact of body mass and wing morphology on bird migration distance.
Cite this work
Researchers should cite this work as follows:
- Cahill, B., Monfils, A., Linton, D. (2019). Movement: Nature's Flying Machines. Biodiversity Literacy in Undergraduate Education, QUBES Educational Resources. doi:10.25334/Q4P165