A Quick and Simple Natural Selection Role Play

Teaching evolution remains a challenging task in biology education. Students enter the classroom with stubborn misconceptions and many traditional examples of the process of evolution may not resonate with students. This short role play activity is designed to easily integrate into any class session on evolution and provide students with a concrete, tangible example of natural selection. In addition, it specifically addresses several misconceptions about evolution. In this activity, students become a fictional population that is under a selection pressure. As students take on the role of a population, they are reminded of the requirements for natural selection, fall victim to a selection pressure, and observe the change in allele frequencies over time. In the context of a class session that focuses on the mechanisms of evolution, students are able to immediately visualize the process of natural selection. This role play only takes 10-15 minutes, requiring minimal class and preparation time. It has been successfully used in both introductory and non-majors' biology classrooms. Though simplified and fictional, this role play provides a concrete example as a foundation for students' growing understanding of evolution.

Primary image: Depicts visual representation of populations evolving.

0 comments 3 reposts

Profile picture of Emily Rude

Emily Rude onto Evolution - natural selection

A Quick and Simple Natural Selection Role Play

Teaching evolution remains a challenging task in biology education. Students enter the classroom with stubborn misconceptions and many traditional examples of the process of evolution may not resonate with students. This short role play activity is designed to easily integrate into any class session on evolution and provide students with a concrete, tangible example of natural selection. In addition, it specifically addresses several misconceptions about evolution. In this activity, students become a fictional population that is under a selection pressure. As students take on the role of a population, they are reminded of the requirements for natural selection, fall victim to a selection pressure, and observe the change in allele frequencies over time. In the context of a class session that focuses on the mechanisms of evolution, students are able to immediately visualize the process of natural selection. This role play only takes 10-15 minutes, requiring minimal class and preparation time. It has been successfully used in both introductory and non-majors' biology classrooms. Though simplified and fictional, this role play provides a concrete example as a foundation for students' growing understanding of evolution.

Primary image: Depicts visual representation of populations evolving.

0 comments 3 reposts

Profile picture of Emily Rude

Emily Rude onto Evolution - natural selection

"Boost your evolution IQ": An evolution misconceptions game

Students often enter introductory biology courses with misconceptions about evolution. For example, many students believe that traits arise when a species needs them or that evolutionary processes are goal-oriented. To address these and other misconceptions, we have developed an activity called "Boost Your Evolution IQ." Student groups compete against one another in a fast-paced, challenging quiz that is presented using PowerPoint. Questions get harder from beginning to end, and the stakes get higher: Each correct answer earns double points in round 2 and then triple points in round 3. Student collaboration throughout the activity helps reinforce the concepts in advanced students and allows struggling students to hear evolution explained in various ways. Further, the same misconception is often tested multiple times, allowing students to learn from their mistakes. This activity is useful as a review before an evolution exam or as a pre- and post-test. It may also be adapted for large classes using clicker technology. We provide a detailed explanation of the approach in the attached video (Supporting File S1).

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto Evolution - misconceptions

Why Meiosis Matters: The case of the fatherless snake

A compelling reason to learn something can make all the difference in students’ motivation to learn it.  Motivation, in turn, is one of the key attitudes that drives learning.  This story presents students with a compelling puzzle of a fatherless snake.  The puzzle motivates students to learn about meiosis and mitosis, since the only way to explain the origin of the fatherless baby is by mastering details of meiosis.  During the process, students work through the major steps in meiosis, compare and contrast mitosis and meiosis, and apply their understanding to predict how meiosis “went wrong” to produce an unusual offspring that did not originate through union of an egg and a sperm.  This story can be adapted for introductory or advanced students and can be scaled from a brief introduction in a single lecture to a series of active learning exercises that could take two or more lecture periods.

0 comments 4 reposts

Profile picture of Emily Rude

Emily Rude onto Genetics

Teaching Notes for Global Temperature Change in the 21st Century

This is an FMN participant supplement for the TIEE module "Global Temperature Change in the 21st Century," authored by Daniel R. Taub and Gillian S. Graham in 2011.

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto climate change

Louse and Human Coevolution

This module examines the complicated co-evolution of Lice, Humans, and Great Apes

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto Evolution - Human

Behavioral Genetics: Investigating the genes of a complex phenotype in fruit flies

Introductory genetics laboratory published as GSA Learning Resource

0 comments 3 reposts

Profile picture of Emily Rude

Emily Rude onto Genetics

Investigating Evidence for Climate Change (Project EDDIE) with CO2 and 13CO2 data: adapted for R

This is an adaptation to work in R of Investigating Evidence for Climate Change (Project) by Hage, M. 2020. Students will investigate geologic and modern evidence for global temperature and atmospheric CO2 change using ice-core data and Mauna Loa records.

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto climate change

Calling Bull Case Study — 99.9% Caffeine-free with R

This is an adaptation of Calling Bull's Case Study on how caffeine free is hot chocolate versus coffee in order to make it into a student project that uses R.

0 comments 1 reposts

Profile picture of Emily Rude

Emily Rude onto Stats

My Twin Sister Case Study

A young boy wonders why his twin sister can roll his tongue, but he cannot. Case centers on meiosis.

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto Genetics

Population Genetics: Limits to Adaptation

This module introduces gene flow in the context of understanding the persistence of maladaptive traits in some populations. It is intended for an introductory biology audience.

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto Evolution - gene flow

Investigating human impacts on stream ecology: locally and nationally

This is a modification of an original TIEE Module, investigating these questions: How does nutrient pollution impact stream ecosystems locally and nationally? How does land cover change impact nutrient pollution?

0 comments 1 reposts

Profile picture of Emily Rude

Emily Rude onto River Eco

Final Project for Calling Bull

misinformation

0 comments 1 reposts

Profile picture of Emily Rude

Emily Rude onto NOS

Redlining and Climate Change

Redlining was a racist, legal practice and its impacts are measurable in terms of environmental variables in US cities today. This resource examines redlining, urban environments, and climate change.

0 comments 7 reposts

Profile picture of Emily Rude

Emily Rude onto climate change

Global Temperature Change in the 21st Century: An Introduction to Global Climate Models and Graphing in Excel (Adapted for Non-Majors)

Students link human behavior in various climate change scenarios to predicted temperature outcomes at both local (their assigned Latitude) and global (Latitudinal trends) scales. This adaptation is intended to be more accessible to non-majors.

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto climate change

Too much of a good thing? Exploring nutrient pollution in streams using bioindicators

Students use data on nitrogen and phosphorus levels in streams and macrobenthic insect biodiversity to consider issues of nutrient pollution and stream health while learning to filter, summarize, and plot data.

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto River Eco

Using Zebrafish in a Developmental Biology Lab Course to Explore Interactions Between Development and the Environment

Important learning outcomes for biology students include the ability to develop experiments as well as pull together concepts across their coursework. The field of developmental biology, especially environmental influences on development (eco-devo), provides a framework for connecting concepts including tissue dynamics, cell signaling, and physiology. An eco-devo framework also provides opportunities for experiments that are relevant to student interests and/or experiences by encompassing topics such as the impact of environmental contamination or maternal health on development. Here we present a guided course-based undergraduate research experience (CURE) for students to work with zebrafish embryos as a foundation for the design and execution of their own novel research project. The guided experiment that is performed first in this lesson explores how the weed killer atrazine might affect development of zebrafish, even though atrazine would not be expected to impact animals. The student-developed independent experiment is planned during the guided experiment and then performed in subsequent weeks by students in the second part of this lesson. The independent experiment allows students to investigate a research question related to their own interests. These experiments can be modified for a variety of courses depending on the instructor's curriculum, time constraints, and goals for the experiment. Students are particularly engaged in the lesson because it enables them to investigate their ideas and interests.

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto River Eco

Differential Gene Expression during Xenopus laevis Development

In Developmental Biology classes, students are challenged with understanding how differential gene expression guides embryonic development. It can be difficult for students to realize that genes need to be turned on or off at the right time and place in order for development to proceed normally. In this lab, students working in groups perform experiments with live embryos and visualize differential gene expression allowing them to become invested in their experiment and curious about the results. This lab also addresses the benefits of Xenopus laevis as a model organism and allows students to observe the changes Xenopus embryos undergo during early embryonic stages. After the students have chosen and fixed two stages of Xenopus embryos, they perform an in situ hybridization on the embryos to visualize gene expression at two different developmental stages. They then compare their results with those from other lab groups who analyzed their embryos for different genes. The students self-reported that they better understood the concept of differential gene expression during vertebrate development and enjoyed doing this series of lab experiments working with live materials.

0 comments 2 reposts

Profile picture of Emily Rude

Emily Rude onto Genetics

A Rapid Genetic Screen Using Wisconsin Fast Plants<sup>®</sup>: A Hands-On Approach to Inheritance of <i>de novo</i> Mutations

Some concepts in genetics, such as genetic screens, are complex for students to visualize in a classroom and can be cumbersome to undertake in the laboratory. Typically, very large populations are needed, which can be addressed by using micro-organisms. However, students can struggle with phenotyping microbes. For macroscopic organisms, the number of offspring produced, and the generation time can be challenging. I developed this lesson as a small-scale genetic screen of Fast Plants®. These plants are amenable to teaching labs as they have simple growth requirements, a short generation time, and produce numerous seeds that can be stored for years. Seeds used for this screen are purchased pre-treated with a DNA damaging agent, removing the need for in-house use of mutagens. Also, students can screen the phenotypes without specialized equipment. The initial lesson begins with an examination of the first generation of plants. Later their offspring are screened for altered phenotypes. Students responded well to having full-grown plants available on the first day of the lab project. This lesson fostered student collaboration, as they worked with class datasets. Differences in growth due to mutagenesis treatment in the first generation were clear to students who had not worked with plants before. Identifying plants with altered phenotypes in the next generation was more of a challenge. This lesson incorporates key concepts such as somatic and germline mutations, the impact of such mutations on phenotype, and the inheritance of mutation alleles, and provides a hands-on way to illustrate these concepts.

Primary Image: Fast Plant® phenotype differences observed in the M2 generation. This pot contains three full-sibling M2 seedlings from a single M1 parent plant. The seed of their parent plant received 50 Krads of radiation. Plants 1 and 2 are of standard height, while plant 3 is greatly elongated. Image by AL Klocko.

0 comments 4 reposts

Profile picture of Emily Rude

Emily Rude onto NOS

A Rapid Genetic Screen Using Wisconsin Fast Plants<sup>®</sup>: A Hands-On Approach to Inheritance of <i>de novo</i> Mutations

Some concepts in genetics, such as genetic screens, are complex for students to visualize in a classroom and can be cumbersome to undertake in the laboratory. Typically, very large populations are needed, which can be addressed by using micro-organisms. However, students can struggle with phenotyping microbes. For macroscopic organisms, the number of offspring produced, and the generation time can be challenging. I developed this lesson as a small-scale genetic screen of Fast Plants®. These plants are amenable to teaching labs as they have simple growth requirements, a short generation time, and produce numerous seeds that can be stored for years. Seeds used for this screen are purchased pre-treated with a DNA damaging agent, removing the need for in-house use of mutagens. Also, students can screen the phenotypes without specialized equipment. The initial lesson begins with an examination of the first generation of plants. Later their offspring are screened for altered phenotypes. Students responded well to having full-grown plants available on the first day of the lab project. This lesson fostered student collaboration, as they worked with class datasets. Differences in growth due to mutagenesis treatment in the first generation were clear to students who had not worked with plants before. Identifying plants with altered phenotypes in the next generation was more of a challenge. This lesson incorporates key concepts such as somatic and germline mutations, the impact of such mutations on phenotype, and the inheritance of mutation alleles, and provides a hands-on way to illustrate these concepts.

Primary Image: Fast Plant® phenotype differences observed in the M2 generation. This pot contains three full-sibling M2 seedlings from a single M1 parent plant. The seed of their parent plant received 50 Krads of radiation. Plants 1 and 2 are of standard height, while plant 3 is greatly elongated. Image by AL Klocko.

0 comments 4 reposts

Profile picture of Emily Rude

Emily Rude onto Genetics