Support

Support Options

  • Knowledge Base

    Find information on common questions and issues.

  • Support Messages

    Check on the status of your correspondences with members of the QUBES team.

Contact Us

About you
About the problem
  • Discoverability Visible
  • Join Policy Invite Only
  • Created 24 Jun 2015

Analyzing Students’ Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

Hi, everyone.  I'll be leading a discussion on the following paper on Monday, November 30, at 10 am.  Hope to see you there!

Krell, Moritz, Reinisch, Bianca, Krüger, Dirk, (2015), "Analyzing Students’ Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics", Res Sci Educ, 45, 3: pg: 367-393, (DOI: 10.1007/s11165-014-9427-9).

In this study, secondary school students’ (N=617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students’ responses are interpreted as their biology-, chemistry-, and physics-related or general understanding of models and modeling. A subpopulation (N=115; one class per grade) was subsequently asked which models they had in mind when answering the tasks referring to biology, chemistry, and physics (open-ended questions). The findings show significant differences between students’ biology-, chemistry-, and physics-related understandings of models and modeling. Based on a theoretical framework, the biology-related understanding can be seen as less elaborated than the physics- and chemistry-related understandings. The students’ general understanding of models and modeling is located between the biology- and the physics-related understandings. Answers to the open-ended questions indicate that students primarily think about scale and functional models in the context of biology tasks. In contrast, more abstract models (e.g., analogical models, diagrams) were mentioned in relation to chemistry and physics tasks. In sum, the findings suggest that models may be used in a rather descriptive way in biology classes but in a predictive way in chemistry and physics classes. This may explain discipline-specific understandings of models and modeling. Only small differences were found in students’ understanding of models and modeling between the different grade levels 7/8 and 9/10.

Comments on this entry

There are no comments at this time.

Post a comment

You must log in to post comments.

Please keep comments relevant to this entry.

Line breaks and paragraphs are automatically converted. URLs (starting with http://) or email addresses will automatically be linked.